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Using only easily computable portions of certain I:-subdifferentials an implemen­
table convergent algorithm for finding the minimizer of a non-differentiable convex
program is given. At each iteration cycle certain projections are computed and
corrected suitably. The negatives of these directions are feasible directions of strict
descent for the objective function. The convergence of the algorithm is proved.

1. INTRODUCTION

This paper presents an implementable algorithm for the minimization of a
certain type of non-differentiable convex function subject to a finite
collection of differentiable convex constraints. The algorithm below is
obtained by modifying and extending the subgradient projection algorithm
we gave in 1111. All the introductory remarks in [11] apply to this paper as
well. In a certain sense, the work in this paper is the subgradient counterpart
to Rosen's [9] "Part II: Non-linear constraints" paper. The algorithm
proposed here avoids the possibility of "jamming," a situation where the
generated sequence clusters or even converges to non-optimal points. For the
original gradient projection [9] this possibility is not excluded. The
algorithms of Wolfe [12 j and Lemarechal [2 j generalize classical methods of
unconstrained optimization in the differentiable case to the corresponding
non-differentiable case by replacing the gradient with an appropriately
chosen subgradient. This paper accomplishes the analogous task for the
constrained case with the attendant complications. Our algorithm also
generalizes the work of Rosen 19] and Polak [4] and is an extension of the
algorithm in [111. In implementing the algorithm we will have to compute
only certain portions of the e-subdifferentials. This is easily accomplished
here, in contrast to some algorithms in the literature, where the complete e­
subdifferential is called for. The complete e-subdifferential uses non-local
information and in general it is a prohibitive task to compute it. The proof
that the algorithm converges is somewhat involved and is given in Sections 5
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and 6. The computational details and experience with the algorithm IS

reported in paper [31. The computational details in 110 I apply directly to our
earlier paper III I, but many details in 110 I definitely have implications to
this paper as well.

2. PROBLEM

We consider the following problem. Let Q c iI be a nonempty open
convex subset and f, g;, r j : Q --> H, i = L ..., m: j = L.... r all be convex
differentiable functions on Q. Let

x = IX E Q I g;(.r) ~ 0, i = I ..... m I

be bounded and assume that Slater's constraint qualification (SQ) is
satisfied:

There exists some a E X such that

gila) < O. i = L. .., m.

Let f be strictly convex also. i.e.,

(SQ)

4f((x + y)/2) < fix) + fry).

Let

x. Y EX. x'* y.

r(x) = max~vi(x) I I ~ j ~ rio

Our problem is to minimize fix) + r(x) subject to the constraint x EX.
We denote this problem by (P). More explicitly,

g;(.,)~O.

fix) + r(x)

i = 1,. .., m,

(min).
(P)

Note thatf, gi' vj are all continuously differentiable because they are convex
and differentiable on open Q.

3. NOTATION

Let x E X and e >O. We define the sets of indices I ix) and J ,(x) by

IcCx ) = {I ~i~ml g;(x»~f;f·

J o(x) = I I ~ j ~ r I v;(x) >v(x) - c; f·

(3.1 )

(3.2)
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Naturally,

and

Jo(x) = {I <} <r I vix) = v(x)}.

Using these index sets we define the following convex subsets

Cix) = cone{VgJx) liE fix)},

and
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(3.3 )

(3.4 )

(3.5)

(3.6)

Here and elsewhere we denote by cone S the convex cone generated by S
with apex at 0, and by conv S the convex hull of the set S. Note that when S
is empty, cone S = {O}, whereas conv S is empty.

For any non-empty closed convex subset S c IR d there is a unique point
a E S nearest to the origin, which we denote by N[ S I. The point a = NtS ] is
characterized by the inequality

for all xES. (3.7)

Here and henceforth the standard Euclidean inner product of two vectors in
~~d is denoted simply by juxtaposing the vectors. The corresponding
Euclidean length is denoted by I . I.

4. ALGORITHM

In this section we present a subgradient projection algorithm for solving
problem (P). We start by doing a simple unconstrained minimization of the
C 1 function f. Then we carry out the iterative scheme of the main algorithm,
the subgradient projection algorithm.

4. I. ALGORITHM.

Step 1. Do an unconstrained minImIzation of the function j, say,
using a method of conjugate gradient descents. If no minimizer exists in [}
GO TO Step 3. If minimizer c exists, check whether c E X. If c rl. X, GO TO
Step 3. If c E X, proceed.

Step 2. Compute Vvic),} = I,... , r. If Vvic) = 0 for every}, STOP; c
is the unique minimizer of problem (P). If Vvic) '* 0 for some}, proceed.

Step 3. Start with arbitrary X oE X and k = O. Let 6 0 > 0 be such that
6 0 < -max1<i<m gi(a). Set 6 = 6 0 , (Recall that a is known, a priori, in the
problem.)
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Step 4. Compute Yo NlvJ(xk) + Ko(xd + Co(xdl. If Yo = O. STOP:
x k is the solution of problem (P). If Yo =I=- 0, proceed.

Step 5. Computey, Nlv/(xk)+KixdtC,(x,)j.

Step 6. If IYei l > s. set [;k = C, Sk = Y c and GO TO Step 8.

Step 7. Replace f; by 42 and GO TO Step 5.

Step 8. Let 1 = IS,(.\:k)' If 1 is empty. let Uk = 0 and M k = O. If I IS

non-empty. let Yu = vg;(xk) vgi(xk). i. j E I. Solve the linear program

\. ,'ull;?: Ivgi(xk)l. j E I.

Il;?:-O. iE/.

\. u (min)._,I
iEI

It is shown later that this linear program has a minimal solution (jii)' Let

Set

M, = lI v/(xdl + l11ax IVL'J(xdlilllkl.
! ""'-} "'" r

Step 9. Let Ak = ISkl'/(2Afk +- I) and i k =Skt "'kUk'

Step IO. Find ak • where

It will be shown that ak > O.

Step II. Find Uk E 10. ak j such that there exists

Zk E vf(xk (lkid +- KO(x k .- U,l k ).

with

If no such Z k exists. set ak ak •

Step 12. Define x k ;1= x k ~ akik . Increment k by I and GO TO
Step 4.

4.2. Note that any method of finding the critical points of smooth
convexf, the zeros of the equation vJ(x) = 0. may be substituted for Step I
above. This would be particularly useful when f has a nice analytic
expression. The unconstrained minimization is done at the start to exclude a
very special easy case of problem (P). (See Lemmas 5.10 and 6.6.)
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4.3. In practice to improve the convergence of the algorithm one
may wish to reset C = Co in Step 4 during the initial iteration cycles of the
algorithm. This should avoid the possibility of taking small steps when one is
not "near" the optimal solution. After these iterations we revert back to the
algorithm as given above with a minor change. We set c = Co in Step 3, but
instead of using an arbitrary X o E X to start the algorithm, we take X o to be
the last available x k • These changes do not affect our convergence proof,
though, strictly speaking, in Sections 5 and 6 we will have to say that (Ck) is
eventually non-increasing, in place of (ck) is non-increasing.

4.4. Steps 4 and 5 can be implemented as special quadratic
programs, as was done in Rubin [10 J. Step 11 requires a properly
constructed line search, some comparisons and univariate minimizations. See
Rubin !10 I and Owens [3 J. In practice, the statement, "if Yo = 0, STOP" in
Step 4 will be replaced by "STOP, if IYo I:;;:; 17," 17 > 0, a stopping rule
parameter. Also obvious practical modifications for stopping in Step 2 will
have to be included in a computer program. For computational details and
experience we refer to the paper by Owens [3 I.

4.5. By increasing the dimension of the constraint space by 1 and
by increasing the number of constraints by r one can rewrite (P) as a
differentiable convex program to which Polak 14] is applicable, e.g.,

gi(X):;;:; 0,

vj(x):;;:; y,

I(x) + y

i= 1,... , m,

J= 1,... , r,

(min).

Let us mention some of the basic differences between our algorithm and
Polak's. Our procedure faces lower dimensional subproblems. Incidentally,
we believe this to be a reason for the comparatively rapid convergence we
found with our algorithm on problems tested (see [3 J). Our method also
addresses non-differentiability directly. See also remarks in Rockafellar
[7, pp. 2-3 J in connection with this point of view. Polak projects the gradient
of the differentiable objective function on the supporting tangent vector
spaces. Following Rosen [8, 9 J he constructs the appropriate projection
matrices for this. In contrast we use the point in a portion of c-subdifferential
nearest to 0, which we obtain by suitable quadratic programs. We do not
stipulate a certain assumption of linear independency Sect. 4.5 of [4,
paragraph 92}. Our method, like Polak's, is a method of feasible directions.
However, we build feasibility in an entirely different way. Also note that c­
binding maximands are not used in Step II.
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4.6. Practical implementation on the computer shows that
Algorithm 4.1 is viable and applies well to a broad class of problems, linear
[10, 111 and non-linear (see also Sect. 7). In fact, the convergence is quite
good, as found by Rubin 1101 and Owens [31. Owens [31 retested some of
the classic examples of Wolfe [121, Powell (reported in 1121 and [10 I).
Wolfe [131, Dem'yanov and Malozemov Ill, and others. Even in examples
constructed to exhibit jamming the present algorithm converged quickly. On
smooth problems the convergence was not any slower than some algorithms
for the differentiable case with no anti-jamming precautions. Numerical
results on Polak's [41 algorithm appear to be unavailable. For details of
these we refer to Owens 131.

5. FEASIBILITY OF THE ALGORITHM

5.0. We now turn to the task of proving that the steps in the
algorithm are well formulated, i.e., are implementable and that. in fact. the
algorithm converges to the solution of (P). Through a sequence of lemmas
we prove feasibility of the algorithm in this section. Using these lemmas a
proof that the algorithm converges is given in the next section. The proof is
more involved than the corresponding proof in [II [.

We need some more terminology and notation. When F: rI --; [--00,00 lis
a convex function its e-subdijJerential c,F(x), where c ~ 0, is defined by
saying

u E c',F(x) iff F(y)~F(x)+u(y",x)-I;. yE (5.0.1 )

()oF(x) is the subdijJerential of F at x which we denote by (.F(x). Any
u E CiF(x) is referred to as a subgradient of F at x. More explicitly. u satisfies
the subgradient inequality

F(y) ~ F(x) + u(y- x). (5.0.2 )

Note. however, that ()F(x) can be empty. See Rockafellar 161 for all these
and related notions. Let X denote the indicator function of the set X, namely
X(x) = 0, if x E X, and X(x) = 00, if x E X. Then F = f + L' + X is convex on
the whole space and minimizing F(x), x E ~)rI is equivalent to the
constrained minimization problem (P). We keep the earlier notation and
formulate the lemmas. We begin by collecting some properties of the index
sets introduced in Section 3.

5.1. LEMMA. To each x E X and £ ~ 0 there is a neighborhood V of x
such that

liY) c lix). \lyE vnx. (5.l.! )
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"lyE Vnx. (5.1.2)

Proof We verify (5.1.1). For every i E f.(x), gi(X) < -E;. Hence there is a
neighborhood V of x such that gi(Y) < -c, for every Y E V n x. This means
that i E f.(y), proving (5.1.1). Analogously one proves (5.1.2) by considering
the functions wj = vj - v.

5.2. LEMMA. Given x E X, there exists p > 0 such that

f.(x) = fo(x) for o~ c ~p, (5.2.1)

J.(x) = Jo(x) for o~ c ~p. (5.2.2)

Proof Given x E X, note that

lo(x) c I.(x) c f,,(x) if o~ c ~p. (5.2.3 )

In case I o(x) = { 1,... , m f, the lemma is clear. Hence assume that
il, ... , mf\!o(x) is non-empty. In this case, there exists p > 0 such that

max gi(X) < -po
i<i1o(x)

This implies that whenever i E lo(x), then i E f,,(x). In view of (5.2.3) we
conclude lo(x) = f,,(x) and (5.2.1) follows. By considering Vi - v analogously
we see the validity of (5.2.2).

5.3. LEMMA. Let xk E X and (xk') a subsequence such that Xk' ---+ x E X
and Ck' 1O. Then

for all sufficiently large k'.

Proof We may assume that p,..., m}\!o(x) is nonempty. There exists
C > 0 such that

max gi(X) < -c.
i<i1o(x)

(5.3.1)

Let i E lo(x) so that gJx) < O. Then gi(Xk,) < 0 for k' sufficiently large, for
all i E fo(x). Also ck' < c for all k' sufficiently large. If possible, let i E
l'k,(Xk,)\!o(x); we shall derive a contradiction. Since i E f ,,*,(xk,),

gi(Xk,) ~ -ck' > -c.

Hence gi(X) ~ -c. Since i E fo(x), this contradicts (5.3.1), completing the
proof.
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5.4. LEMMA. Let x k E X and Gk 1 G > 0. Suppose that (x k ) is a subse~

quence of (x k) converging tax. Then for the subsequence (x k.) we have

for all k' sufficiently large. (5.4.1 )

Similarly, JoV:) c Jc,(xk)'/or all k' sufficient(v large.

Proof Let iElo(x). Since gj(x)=O, O~g;(XA)->O: and hence
gj(xA ) ~ -c; for all k' sufficiently large. For these sufficiently large k'. we
see that gj(xA,) ~ -CA' which proves the lemma.

5.5. LEMMA. For each x E X and c > O. there exists a () > 0 such that

whenever Ix - y '" (). Y E X.

Proof This is essentially the same as Lemma 5.6 in [11\.

5.6. LEMMA. For all I: ~ 0 and x E X. K ,(x) c ; ,v(x).

Proof Trivial changes in the proof of Lemma 5.1 in [II [ yields this
lemma.

5.7. LEMMA. rv(x) = Ko(X) for every x E X.

Proof This is a known result. See. for example. 15[. Also. minor
alteration in the proof of Lemma 5.4 in [II I yields a direct simple proof of
this lemma.

5.8. From the last lemma and [6\ we immediately see that

v'(x. .1') = maxluy I u E Ko(X}f. (5.8.1 )

where v' (x; .1') = lima ,01 L'(X + ay) - L'(X) f/ a is the directional derivative of l'

at x in the direction y.

5.9. LEMMA. cF(x) = vf(x) + Ko(x) + C o(.'<) for all x EX.

Proof The functions I l' and the indicator function X of the set X are
proper and convex. It is well known that for x E X. ax (x ) = C o(.'()' Since X
has non~empty interior by Rockafellar [61 the lemma follows.

The next two lemmas show that the stopping criteria in Steps 2 and 4 of
the algorithm are well chosen.

5.10. LEMMA. If c E X is such that vf(c) = vvj(c) = 0, j = I ..... r. then c
is the minimizer ofF.

Proof In this case Ko(c)=lOf, because each vvj(c)=O. Also since
vf(c) = 0, we see that 0 E of(c), as 0 E Co(c). This implies that c is a
minimizer of F: uniqueness of c is ensured by the strict convexity of F.
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5.11. LEMMA. If Yo = 0 in Step 4 of the algorithm, then x k is the
minimizer ofF.

Proof Yo = 0 implies that 0 E of(xk ), a necessary and sufficient
condition for x k to minimize F. The strict convexity of f ensures that the
minimizer of F is unique.

5.12. LEMMA. Step 7 of the algorithm is not executed infinitely often in
anyone iteration.

Proof If Step 7 is executed infinitely often in a certain iteration then the
index k remains unchanged from that iteration onwards. By Lemma 5.2 there
exists arbitrarily small e > 0 such that I.(xk ) = Io(xk ) and J.(xk ) = JO(xk ).

Due to expressions (3.1), (3.2), (3.3), and (3.4)

for such c. Hence we find that Yo = Y e for arbitrarily small EO > O. Since
Step 7 is executed indefinitely and e 10, we must have Ye~ O. Hence Yo = 0;
in which case we could not have reached Step 7 at all; a contradiction.

5.13. Step 8 of the algorithm in general requires the solution of a
linear program. We have to show that this linear program has a minimal
solution. We do this now. Recall that one says that a convex cone C is
pointed iff C contains no lines or equivalently C n (-C) = jOf.

5.14. LEMMA. Let al,... ,an be nonzero vectors such that cone{a lO ...,an f

is pointed. Let r = [Yu] be the n X n Gramian matrix, where Yu = aiaj • Then
the linear programming problem

\' , I I_ YUf.Ji) aj ,

i

f.Ji)O,

j 1,..., n,

1,..., n, (5.14.1)

has a minimizer.

f.J I + ... +,un (min)

Proof We first show that (5.14.1) is feasible. For this purpose consider
the auxiliary linear programming problem

f.Ji)O,

0f.J (min).

(5.14.2)
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Here ,u = (,u I"'" ,un)' Note that r = A I A, where A is the matrix whose
columns are a 1 •••• ' an and A I denotes the transpose of A. Hence, the linear
program dual to (5.14.2) is

(nli~O,

(max).
(5.14.3 )

Clearly °is feasible for (5.14.3). We now show that °is a maximal solution
of (5.14.3) with value ° and hence its dual (5.14.2) also has an optimal
solution with value zero. This then would show that (5.14.2) is feasible. If i,
is any vector feasible for (5.14.3), then An ~ 0, i.e.. AA'AA ~ 0. This yields

IAAI 2
~°and hence AA = 0. Since the cone~al'"''anf is pointed with i. ~ 0.

this implies A= 0; proving that °is the only feasible solution of (5.14.3) and
therefore °is the optimal solution of (5.14.3). The feasibility of (5.14.\) is
now clear.

The linear program dual to (5.14.1) is the problem

i.; ~ 0.

Al la,1 + ... +A n la,,1

j = \ .... , n,

i = I ..... n.

(max).

(5.14.4 )

The vector A= ° is clearly feasible for (5.14.4). This, in view of the just
proven feasibility of (5.14.1) and the duality theorem of linear programming.
implies that (5.14.1) has an optimal solution, completing the proof of the
lemma.

We next find an upper bound for the value of problem (5.14.1) and then
use this to obtain an upper bound for the length of the vector
fila, + ... +/1"an , where (/ll, ... ./i,,) is a minimal solution of (5.14.1).

5.15. LEMMA. Let a, ..... a" be as in Lemma 5.\4. Let e j =

convjejll ~j~nl, and w=NIEI. Lei

where (fi I"'" fi,,) is a minimizer of (5.14.1). Then

1 ~ lui ~ (max lail)/(I~tf min la;I).
I I

(5.15.1 )

(5.15.2 )

Proof Since the cone~al,.... anf is pointed, it is easily seen that OEL
and hence w*O. By (3.7), wZ~lwI2, VzEE. This yields the inequality

VI (5.\5.3 )
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Now there exist Ai? 0, L Ai = 1 such that w = L Aiei. For these Ai, by
(5.15.3) we have

(5.15.4)

If we define Pi by Pi = A;/(la;/ IwI 2
), then (5.15.4) shows that (PI,· ..,Pn) is

feasible for (5.14.1) and hence

Hence

lui

-< Ilvl-2/(m~n lail).
I

j \'jJ.a·I-<\'p·la.1",-11.-1 I
, I

-< (max lai l)/(lwI 2 min lail).
t t

(5.15.5)

Also from the relation Li YijPi;) lajl in (5.14.1) we get (Li Pia;) aj ;) lajl,
i.e., lajl-< uaj • By Schwarz's inequality we get lui;) 1, since aj ,* 0, Vj. This
completes the verification of (5.15.2).

5.16. LEMMA. Let eo >°be as in Step 3 of the algorithm and x any
point in X. Then the cone Clx) is pointed for °-< e -< eo' Moreover,
'Vgi(x) '*0, ViE Ilx).

Proof Since °-< [; -< [;0 < -maxI <;;i<;;m gi(a) we see that gi(a) <-[;, Vi, so
that Iia) is empty and hence Cia) = {O}. The statement Vgi(a) '* 0,
Vi E IE(a) is indeed true. The lemma needs no proof if Iix) is empty. So
consider the case when IE(x) is nonempty. In this case x '* a. Put u = a-x.
Now

Hence

Vi E Iix).

ViE Iix). (5.16.1)

This shows that 'Vgi(x) '* 0 for every i E IE(x). Also, if z = L Ai 'Vg;(.\'), where
Ai? 0, i E IE(x), then zu <0, if Ai> °for some i E Iix). Hence zu < 0 for
every nonzero z in Cix), proving that Cix) is pointed; for z, -z E C lx)
implies that z = O.
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5.17. LEMMA. Let f;k > 0 be as in the algorithm.I,,(xk) 110nempty. and II,
be as defined in Step 8 of the algorithm. Then

(i) IIkSk~O.

(iil vg;(.yk ) Uk ~ Ivgi(xkl!.

(S.17.l I

(5.17.2 )

where Sk is defined in Step 6 of the algorithm.

Proof Since Sk = NI vf(xkl + K e,(xd + Ce,(xd I. for i E I ,,,(xk ). both\,
and Sk+vg;(.x:k) belong to vf(xd+ K",,(Xk) + C,*(xk)· By (3.7) then
Sk(Sk + vg;(.x:k ) - ski ~ O. Thus

(5.17.3 )

By Lemma 5.16 C,,(x k ) is pointed and hence by Lemma 5.14 the linear
program in Step 8 of the algorithm has an optimal solution (iii) such that

This with (5.17.3) implies (5.17.1). If 1= I('u I. where ('U "" vg;(.\'k) \gJ\',).
then by the linear program in Step 8

This is inequality (5.17.2). completing the proof.

5.18. LEMMA. Let Sk *' 0 and tk = Sk + ;,lIk' Ilk as in Lemma 5.17. Then
-tk is a feasible direction at x, for eL'erl' A O.

Proof If 'o(xd is empty then every direction is feasible at x" So assume
that Io(xd is non-empty. By convexity of X. if the lemma were false. then
there is 6> 0 such that x k fi.!k rt. X, 0 < a ~ 6. There exists i E lo(xd such
that gj(x k al k ) > 0.0 < a ~ 6. This yields

Dividing by a > 0 and allowing a lOwe get vgJ\'k) tk ~ O. But by the
previous lemma

\j A O.

a contradiction.

5.19. LEMMA. Let Sk =1= 0 and Ak• tk be as in Step 9 of the algorithm.
Then -tk is a feasible direction of strict descefll at x,.
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Proof Note that if I'k(xk) is empty then Uk = 0 so that tk reduces to Sk in
this case. The directional derivative of a convex function is a sublinear
function of the direction, hence

By (5.8.1)

Hence

F'(Xk; -lk) = F'(xk ; -Sk - AkUk)

~ F'(xk ; -Sk) + AkF'(xk ; -Uk)'

F'(Xk; -Sk) = f' (Xk ; -Sk) + v'(Xk; -Sk)

= -'Ilf(xk) Sk + maxl-skY lyE KO(xk)}

= -min {('Ilf(xk) + y) Sk lyE KO(xk)}·

(5.19.1)

(5.19.2)

(5.19.3 )

Since KO(xk) C K'k(Xk), 'Ilf(xk) + y E 'Ilf(xk) +K ..(x k) + C,,/xk), and so by
(3.7),

sk('Ilf(xk) + y)? I SkI 2.

By (5.19.3) and (5.19.4) we see that

F'(xk ;-sd ~ -I SkI 2.

Again by (5.19.2)

(5.19.4)

(5.19.5)

(5.19.6)

V'(Xk; -Uk) = max{-uky lyE K{)(xk)}

= maxj-'Ilv;(xk) Uk I j E J{)(xk)}·

By (5.19.1), (5.19.5), and (5.19.6) we arrive at

F'(xk ; ~lk) ~ -ISkI2 + Akj-'Ilf(xk) Uk + max (-'Ilv;(xk) Uk)}' (5.19.7)
JEJO(Xk)

Now

by Step 8 of the algorithm. (5.19.8)
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By Step 9 of the algorithm Ilk = ISkI2/(2Mk + 1); hence

F'(Xk ;-fk):( -lskl2 + M k ISkI2/(2Mk + 1)

:( sk12/2 < O. (5.19.9)

This inequality proves the lemma because -tk is feasible by Lemma 5.18.

5.20. LEMMA. The number ak defined in Step 7 of the algorithm is

positive.

Proof If I Gk(xd is empty then in view of Lemma 5.18 the lemma is clear.
So consider the case when Ic,(x k ) is not empty. Using (5.17.3) and (5.17.2)
we see that for i E IcJx k )

Vg;(x,) tk Vg;(xd Sk + Ilk Vg;(x,cl Uk

(5.20.li

Now Ilk> 0, since Sk * O. Also by Lemma 5.16. IVg;(Xk)1 > O. This shows
that there exists 6 > 0 such that g;(xk - atk) :( g;(xk), Vi E I c,(xk), 0:( a :( 6.
This fact with Lemma 5.18 proves that ak is positive.

The next two lemmas explain the choice of a k and Zk in Step 11 of the
algorithm.

5.21. LEMMA. Let Sk*O and define q> on 10.ak ! by q>(a) = F(x k ~- W k )·

If ii k is not a minimizer of q> on [0. ii k I, then Z k satisfving Step 11 of the
algorithm exists.

Proof This is essentially Lemma 5.12 of 1111 and the proof in II I I
carries over verbatim with Sk occuring in the proof of Lemma 5.12 in III I
replaced by tk here.

The number ak determined in Step 11 of the algorithm has the following
property:

5.22. LEMMA. Let Sk *°and q> be as in the previous lemma. Then Uk is
the unique minimizer of tp on 10, iik I. Moreover, (lk is positive.

Proof This corresponds to Lemma 5.13 of [I I I and the proof therein
carries over with sk replaced by tk •

5.23. COROLLARY. Let Sk * 0 and X k T \ = X k - aktk as in Step 12 of the
algorithm. Then F(xk + \) < F(xk ).

Proof This follows from Lemma 5.22 and the observation that
F'(x k ; -tk) < O.
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6. CONVERGENCE OF THE ALGORITHM
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Lemmas of the previous section prove that the algorithm is feasible and
that F decreases at each iteration. We now turn to lemmas leading to a
convergence proof.

6.1. LEMMA. Let x E X be the minimizer of F and x be a cluster point of
the sequence (xk ). Then (xk ) converges to x.

Proof Same as proof of Lemma 5.15 of 111 I.

6.2. LEMMA. Let 0 be a cluster point of the sequence (Sk)' Then the
sequence (xk ) converges to x, the minimizer ofF.

Proof We pass to corresponding subsequences (Sk') and (xk,) such that
Sk' -> °and x k' -t.R E X. We shall show that .R minimizes F, so that by the
previous lemma x k -> X. Since the restriction of F to X is continuous from
within X, to prove that x is a minimizer of F, it suffices to show that
F(y):) F(x) for all y E int X. Note that int X is non-empty. We now verify
that for every y E int X,

i = 1,..., m. (6.2.1 )

Recall that a satisfies g;(a) < 0, for every i, and hence to prove (6.2.1) we
may assume that y '* a. Since y E int X, there exists a > 0 such that z = y +
a( y - a) E X. Hence (I + a) y = z + aa and by convexity of g;

which proves (6.2.1).
By (6.2.1) we have

0> g;(.l'):) g;(x) + 'Vg;(x)(y - .R)

= 'Vg;(x)(y - x), Vi E lo(x). (6.2.2 )

Since Sk'->O the sequence (Ck') decreases to zero. Also xk'->x. Hence by
Lemma 5.3

(6.2.3 )

for sufficiently large k'. By the continuity of the function X,:-. 'Vg;(x)(y - x)
at ~R, the fact that Xk'->X, the relations (6.2.2) and (6.2.3), we find that for
sufficiently large k'

(6.2.4 )

040/41/33
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At this stage we complete the proof of this lemma by repeating the reasoning
from Eq. (5.16.3) onwards of Lemma 5.16 of [Ill.

6.3. LEMMA. If the sequence (c k ) defined in the algorithm cOIH'erges 10

zero. then the sequence (x k ) converges to .X', the minimizer ofF.

Proof By Lemma 5.12, Step 7 of the algorithm is executed finitely often
per iteration. Hence a subsequence (c k ) of (c k ) may be chosen such that

and I)'
: - I:~

where .1'/ was defined in Step 5 of the algorithm. Since I;k' O. Yi, ,0. We
replace all the occurrences of skin the proof of the previous lemma by y"
and repeat the reasoning therein to see the validity of the present lemma.

6.4. LEMMA. The sequence (s k) is bounded.

Proof Note that

so that

Since KO(xk) = convj'Yvj(xk) I j E JO(xkn.

INIKo(xdli~maxUVI)xk)1 jEJO(xkli

"" max I '\'vj(xk)l·
I r

Hence

iSkl ~ max I 'Yf(x)1 + max max VI';(X)i·
xc.\' XEX 1->.; r

The right-hand side of the above inequality is finite since the functions f and
1'; are all of class Clan the compact set X. This proves the lemma.

6.5. LEMMA. Let Eo > 0 be as in Step 3 of the algorithm and 0 ~ c "" Co'

Let x E X and IJx) be non-empty. Then there exists 6 > 0 such that

where

d(y) >~d(x) > 0, \f .I' - Xi < 6, .I' E X. (6.5.1 )
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Proof By Lemma 5.16, V'gi(X) * 0, ViE/ix) and the cone Ce(x) is
pointed. This ensures that °fl; conv{ei(x) liE ll'")} and hence d(x) > 0.
Choose 6>0 such that by Lemma 5.1, Ilx)~llY) if Ix YI<O,yEX.
We can also require that 6> °be such that V'g;(y) *°and

le;(y) - ej(x)1 < ~d(x),

Vi Ell'"), y E X, Iy - x I< 6.
Now

d(y) = inf 11 L A;eJy) II A; ~ 0, ~.); = I, i E IlY)(,

~ inf II L A;eiLv) II A; ~ 0, ~ Ai = I, i E I AX) ( .

Also

I.~ A;e;(y) 1~ I. ~ A;e;(X) I-I. L A;(e;(y) -- e;(x» I·
IE/,(x) IE/,(x) IE/c..x)

This in conjunction with (6.5.2) yields the inequality

(6.5.2)

d(y) ~ inf ) I~ A;e;(x) II A; ~ 0, ~ Ai = I, i E IlX)(

I
-d(x).2 .

We have already verified that if °is a cluster point of either the sequence
(Iskl) or the sequence (c k ) then (x k ) converges to the minimizer of problem
(P). So let us consider the situation when (Iskl) and (ck) are both bounded
away from zero. Since (c k ) is a nonincreasing positive sequence (c k ) is
bounded away from zero iff there is C >°such that Gk 1c. From the steps of
the algorithm this can happen iff Gk = G, eventually. Hence in the following
lemmas we shall assume that the (Gk) defined in the algorithm is such that
c;k = f; > 0, eventually, and that (sd is bounded away from 0.

6.6. LEMMA. Let (Sk) be bounded away from zero. Then the sequences
(tk) and (ak) are both bounded. Moreover, (tk) is bounded away from zero.

Proof Let
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Since we have got past Step 2 of the algorithm the continuous function In

braces i··· f is positive on compact X and hence 0 > O. By Step 8 of the
algorithm

M k = ilV'f(xkJI + max lV'vj(xdli ukl
I <.i<J

and hence

;, k IUk I= iUk II Skl
2
/ ( 2Mk + I J

(.Mkls k 2/io(2Mk + 1)( < skI 2/(2o). (6.6.1 )

Since tk=Sk+AkUk with (Sk) bounded. by (6.6.1) we find that (I k ) is
bounded.

We now show that (tk) is bounded away from zero. If not. since (ld IS a
bounded sequence, there exists a subsequence (t k ) such that I k-4 O. Since
the sequence (Sk') is also bounded. by passing to another subsequence again
denoted by (k'), we can require that Sk --+ S * O. This implies that Sk +

Ak,U k, --> O. Hence, Ak.Uk. --> -s and

(6.6.2)

By (5.17.1). Uk.Sk . .;?O for every k' which shows that (AkUk)Sk"'·
Ak,(UkSk.).;? O. By (6.6.2) S = O. a contradiction. Hence (lk) is bounded away
from zero.

Nowak Itk i is bounded above by the diameter of X. Since we just showed
that itkl is bounded away from zero. we conclude that (akJ is a bounded
sequence.

6.7. LEMMA. Let (I: k) be as defined in the algorithm. Suppose Ihal {;k
I: > 0, eventually. Let (k') be a subsequence such thaI Ic(xk ) is nonemply.!e}/"
every k' with X k' --> x E X. Then there exists M> 0 and e.;? I such that Ihe
following hold:

1 (.juk.l(.e. Ilk',

ISk.!2/(2M + 1) (. i'k' (. j Sk 1

2
,

Proof By Lemmas 5.1 and 6.5 there exists 6 > 0 such that

IiX)::::J Ikv),

d(y).;? d(x)/2. Ify E X, I v x < 6.

(6.7.1 )

(6.7.2)

(6.7.3 )

(6.7.4 )

where d was defined in Lemma 6.5. There exists p such that I X k - x < 6 if
k'.;? p. Hence, l£(xk.)cl/x). Ifk'.;? p. This shows that l,(x) is non-empty
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and hence by Lemma 5.16, Vg;(X) *- 0 for every i E I.ex). By reducing fJ >0,
if necessary, we may assume that

(6.7.5)

ViEI€(x),yEX, ly-xl<fJ. By Lemma 6.5, d(x»O. Using Lemma 5.15,
(6.7.3), (6.7.4), and (6.7.5) we get

IUk' I~ ( max IVg;(xk,)J)/(d2(xk,) min IVg;(xk,)J)
;EI €(Xk') iEI tf,Xk')

~ 4( max IVg;(xd)/(d 2(x) min IVg;(xd)
iEI €(x) ;EI €(x)

~ 12(max IVg;(x)I)/(d 2(x) min IVg;(x)[)
IE/€(x) IE/€(x)

Vk' ~ p. (6.7.6)

Since fJx is a positive real number, there exists e> 0 such that IUk' I~ e, for
every k'. By (5.15.2), luk,1 ~ 1 as well, so that (6.7.1) is verified.

By Step 8 of the algorithm,

~ max (IVf(z)1 + max IVvj(z)[W
ZEX I <.I<or

=M

By Step 9 of the algorithm,

(say). (6.7.7)

The inequality (6.7.2) is now evident, completing the proof of the lemma.

6.8. LEMMA. Let (Gk) be as defined in the algorithm. Suppose Gk = G > 0
eventual(v and (Sk) is bounded away from zero. Then the sequence (a k)
converges to zero.

Proof If (ak) does not converge to zero by Lemma 6.6 there is a subse­
quence (a k ,) such that ak , ---+ a> O. We distinguish two cases.

Case 1. We assume that I€k'(xk,) is empty for an infinity of indices k'.
Passing to a subsequence, again denoted by k', we can require that I ,*,(xk ') is
empty for every k'. Due to the boundedness of (Sk) and compactness of X we
can require Sk' ---+ S *- 0, xk' ---+ x E X. In the present case, Uk' defined in Step 8
of the algorithm is zero and hence tk, = Sk' for all k'. Since (F(xk)) is a
decreasing sequence all its subsequences converge to F(x). Hence F(xk,+ 1)---+
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F(x) also. Since xI. j I = xI.' ak,sk" in the present case, xI.. 1 4 X -- us. We
therefore find that

F(x- as) = F(x).

Since

(6.K.1 i

and F is convex we find that

F(xk · - aksd (, F(x k Uk Sk

'S., iF(xk - UkS k ) 1- 1'(Xk )

In the limit we get

F(x as) (, F(x -' (1s/2) (, F(x).

(6.K.2 )

(6.X ..'I

In view of (6.8.1 ), (6.8.3), and the strict convexity of F we find u = O. a con
tradiction.

Case 2. We now consider the case when u I. -. U ° and 1,:;. (x I. )

Ilxk .) are non-empty for all sufficiently large k'. Once more. we may assume
that Sk' -> S i' 0 and xI.' -> X E X. The hypotheses of Lemma 6,7 are nm\
applicable, so that (6.7.1) and (6.7.2) hold. We may therefore pass to

another subsequence, again denoted by k l
• such that Uk --> /I. i'k ,,~ i" By

(6.7.1) and (6.7.2) we also see that

ul~ I and (6X4)

By Step 9 of the algorithm lk = 51. + ;'1.,111.' and hence

(say). (6.8.5 )

Now l,* 0, by Lemma 6.6. Since XI. . I xI. "~ Uk lk . .., X- ul. and since
(F(x k»is decreasing to F(x), we see that

F(x - at) = F(t).

Also as in Case I above.

F(x at) (, F(x - atl2) ~ F(x),

(6.8.6 )

(6.8.7)

which contradicts the strict convexity of F, since a > O. The proof of the
lemma is now complete.
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6.9. LEMMA. Let (e k ) be as defined in the algorithm with ek = I' > 0
eventually and (Sk) bounded away from zero. Let the subsequence
x k • ---> x E X. Then there is a subsequence of (k'), again denoted by (k'), such
that Io(xk .) = 10 (x) for all k'.

Proof Since the index sets Io(xk .) are subsets of {I,... , m}, we can pass to
yet another subsequence, again denoted by k', such that Io(xk .) = I, for
every k'. We will show that 1= Io(x). If i E I, then g;(xk .) = 0, so that in the
limit g;(x) = O. This shows that Ie Io(x). There is nothing to prove if Io(x) is
empty. To prove the reverse inclusion, let i E Io(x)V. We shall derive a
contradiction. Since x k+ 1 = x k - aktk, with (tk ) shown bounded by
Lemma 6.6, and ak--->O by Lemma 6.8 we see that IXk+ 1 -xkl---> 0 as k---> 00.

Let M = maxZEX lV'g;(z)I. Then there exists ko such that

(6.9.1)

Since i E I, g;(xk .) < O. Also since g;(xk .) ---> 0, in the sequence of integers
(k'), we can find p >ko such that

(6.9.2)

Let q be the first index such that q > p and

(6.9.3)

Now

g;(xq _ 1) ~ g;(xq) + V'g;(xq)(xq_ 1 - x q)

> -(6;2) - Mej(2M) > -e.

This shows that i E I lXq _ 1)' By Step 10 of the algorithm

g;(xq):( g;(xq_ 1)·

By (6.9.3) and (6.9.4),

(6.9.4)

(6.9.5)

Note that q - I> p. If q - 1 = p, then (6.9.5) contradicts (6.9.2). If
q - 1 > p, then (6.9.5) contradicts the choice of q as the smallest index
greater than p for which (6.9.3) holds. Hence Io(x) = I, and the proof of the
lemma is now complete.

We are finally in a position to prove the convergence of the algorithm.

6.10. THEOREM. Algorithm 4.1 generates either a terminating sequence
whose last term is the minimizer of problem (P) or an infinite sequence
converging to the minimizer of problem (P).
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Proof In view of Lemmas 5.10 and 5.11, we need only consider the case
in which Algorithm 4.1 generates an infinite sequence (x k ). In this case,
Sk *' a for every k. We assume that (x k ) fails to converge to the solution of
(P) and derive a contradiction.

Due to the remarks after Lemma 6.5 we may assume that (sd is bounded
away from zero and that the non-increasing positive sequence (E k ) is such
that [,k = E; > 0, eventually for all k. We distinguish two cases.

Case I. We assume that there are an infinity of indices k for which Z I in
Step II of the algorithm are defined and arrive at a contradiction. Denote
this subsequence of indices by (k'). Let us consider the situation when I,(x k )

are nonempty for all k', eventually. Passing to a further subsequence. if
necessary, but denoting the new subsequence again by (k'), because X is
compact, (Sk')' (Uk')' (M k ), (A k ) all bounded (Lemmas 6.4. 6.6. and 6.7) we
may assume that

(6.10.1 )

By Lemma 6.8, ak->O and hence X k ', 1 =Xk aklk -->X. Passing to a still
further subsequence, again denoted (k'), we may assume that there exists sets
l, J. and l' such that

(6.10.2)

for all k'. Since (xk,) and (xk " 1) both converge to x. by Lemmas 5.5 and 5.1
we find that Jo(x)cJ,(xk.) and JO(.'<k.l)c}O(x). respectively. for large
enough k'. Hence by (6.10.2) we find that l' c 1. Let us set

(6.10.3 )

and

(6.10.4 )

For each k' we have

(6.10.5 )

and

(6.10.6)

where

(6.10.7 )
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(6.10.8)

Now the carrier (i.e., point-to-set map) y H DU(Y) = K o(y) is upper
semicontinuous. (See Rockafellar [6 ].) Clearly, for each y E X,
Vf(y) +Ko(Y) is a closed set. Hence y H Vf(y) +Ko(Y) is a closed carrier.
From (6.10.5) we see that (Zk') is a bounded sequence, and hence passing to
a further subsequence assume that Zk' --+ z. Since X k '+ 1 --+ x due to (6.10.5)
and the c10sedness of the carrier y H Vf(y) + Ko(Y) we conclude that

Z E Vf(x) + Ko(x).

Due to (6.10.8)

Sk' (Vf(Xk ') + ~ ,,1,jVv;(xk ,) + ~ PiVgi(Xk ,»):;?: ISk,1 2
,

jEJ iEI

(6.10.9)

(6.10.10)

where Aj , Pi are all :;?:O, with LjEJ ,,1,j = 1. For fixed (A) and (Pi)' we allow
k l

--+ 00 in (6.10.10) to get

This shows that

where

S = NIVf(x) + K* + C* I, (6.10.11 )

K* = convjVuix) Ij E J} and C* = cone{Vgi(x) liE I}.

This with (3.7) gives us the inequality

Vy E K*.

By Lemma 5.4, Jo(x) cJ and hence Ko(x) cK*. Moreover, by (5.19.3)

FI(x; -s) = -min{(Vf(x) + y)s lyE Ko(x)}

~ -lsl 2 by above. (6.10.12)

As in (5.19.7) from (6.10.12) we now get

FI(x; -t) ~ -lsl 2 + A{-Vf(x)u + max (-Vuj(x)u)}. (6.10.13)
JEJo(xl
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Note that (6.10.1) with (5.19.8) shows that

(lVf(X)1 + max Iv;(x)!) lui ~ M.
1<') cS r -

Since ). = IsI ZI(2Af + 1), by (6.10.13)

F'(x; -t) ~ si z+ IsI 2MI(2M + I) ~ -Is :z12 < O. (6.10.14)

We now show that -t is a feasible direction at x. The proof of
Lemma 5.18 shows that to show-t is feasible. it is sufficient to show that

and (6.10.15)

Since Co(x) c C*. the argument used in deriving (5.17.3) applied now with
(6.10.11) yields Y'gi(X)S)O. 'r/iElo(x). By (5.17.2) we have

Allowing k' -+ 00 and using Lemma 5.4. we get

VgJ,<)U \7g ;(x)l.

o
Vi E lo(x)

by Lemma 5.16.

Thus (6.10.15) has been verified. This in view of (6.10. 14) shows that-{ is a
feasible direction of strict descent at x.

At this stage let us consider the situation when llx, ) are empty for an
infinity of k'. Renaming this subsequence again as (k'). by Step 8 of the
algorithm we see that u,=O. )., =ls,.l z. and s, =1,. Vk'. By Lemma 5.4
lo(x) is empty, so -s is a feasible direction of strict descent at x in this case.

As in Lemma 5.19 we form the function 0. where ip(a) = f(x at)
v(x-at). Passing to the limit in (6.10.6) we get ZI=O. In view of(6.10.9)
and Lemma 5.22 we will have to conclude that 0 is a minimizer of Ij).

contradicting our observation that -t is a feasible direction of strict descent
at x.

Case 2. We now take up the case when Zk is undefined for all but a
finite number of indices k. This being the case. we might as well assume that
Zk is undefined for every k. Then by Step I L a k = ak for all k.

We observe that this entails that lixk ) are non-empty for all k;;' l. If
Il'<o) = 0, then since a o = ao' Xl belongs to the boundary of X. so that
I o(xd*0, a fortiori, Il'(1)*0. If Iixk)*0, then since Clk=ak , either
ft(xdnfixhl)*0 or fc(Xkf 1)\!c(xk )*0, i.e.. some constraint which is /:
binding at the kth iteration remains c-binding for (k + I) or else a new
constraint has become binding and hence ebinding also at the (k + I)
iteration. So inductively It(xk ) *0, 'r/k;;' I.
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We just verified that if Z k are undefined for all k, then I ixk) are non-empty
for all k> 1. Once more, we can pass to a subsequence (k') such that x k ,->

x E X, Sk' -> 0. By Lemma 6.7, we pass to yet another subsequence, again
denoted by (k'), such that Ak, -> A> 0, Uk' -> U, IUI> 1. Then

(say). (6.10.16)

Yk'.

By Lemma 6.6 t =F ° and by Lemma 6.8 a k -> 0, so that by the above
X k ' + I -> x also. Using Lemma 6.9 we can also require the subsequence (k') to
satisfy

By passing to a further subsequence, as usual denoted by (k'), we may
assume that lixk ,) = I, for all k'. Note that I is non-empty. In this case,
since ak, = ak, and lo(xk,) = lo(xk,+ I) for every k' by Step 10 of the
algorithm, we find that for each k' there exists i E I such that

(6.10.17)

(6.10.18)

Since i must be one of the indices 1 through m, by passing to yet another
subsequence, again denoted (k'), we can find a fixed i such that (6.10.17)
holds for every k'. Now by Lemma 5.17 and (5.17.3)

V'glxk,) tk, = V'g;(Xk,)(Sk' + Ak·Uk,)

= V'glxk,) Sk' + Ak·V'g;(xk,) Uk'

>Ak.lV'glxd > 0,

since Ak. >°and V'glxk.) =F 0, because i E IcCxk')'
We let rp(a) = g;(xk, - atk')' 0< a < ak, and observe that rp'(a) is a

continuous non-decreasing function of a in the interval [0, ak .). Also by
(6.10.18), rp'(O+)=-V'glxk,)tk.<O. By (6.10.17), rp(ak.) = rp(O) and
ak > 0. We therefore conclude that rp'(ak,-»O. This means that

I.e.,

(6.10.19)

Allowing k' -> 00 in (6.10.18) and (6.10.19) we get

Since Ie> 0, we see that V'glx) = 0. But since i E IeCxk')' g;(xk,) >-G and
hence g;(x) >-G. We therefore get
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This shows that x is not a minimizer of gi and since gi is convex, we are
contradicting the fact that V'gi(X) = O. The proof that the algorithm generates
a sequence converging to the optimal solution is now complete.

7. MIXED CONSTRAINTS

The algorithm in Section 4 can be combined with that in III I to handle
the presence of affine and non-affine convex constraints. In problem (P) of

Section 2, let g 1 '00" gp all be non-affine, convex, and differentiable on .Q and
gPT 1 '00" gm all affine. We now replace condition (SQ) of Section 2 by the
generalized Slater's constraint qualification (GSQ). i.e..

There exists a E X such that
gi(a)<O,i=L.,p and gi(a) ~ O. i = P + 1..... 111. (GSQ)

This affects only the choices of feasible direction and maximum feasible step.
The algorithm becomes:

7.1. ALGORITHM. All steps are the same as 10 Algorithm 4.1 except that
in Steps 8 and 10 define I by

Also the proof of convergence in the prevIOus section carries over to this
more general case with minor changes.
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