Subgradient Projection Algorithm, II

V. P. Sreedharan
Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, U.S.A.
Communicated by E. W. Cheney
Received November 8, 1982; revised July 22, 1983

Abstract

Using only easily computable portions of certain ε-subdifferentials an implemen table convergent algorithm for finding the minimizer of a non-differentiable convex program is given. At each iteration cycle certain projections are computed and corrected suitably. The negatives of these directions are feasible directions of strict descent for the objective function. The convergence of the algorithm is proved.

1. Introduction

This paper presents an implementable algorithm for the minimization of a certain type of non-differentiable convex function subject to a finite collection of differentiable convex constraints. The algorithm below is obtained by modifying and extending the subgradient projection algorithm we gave in |11|. All the introductory remarks in [11] apply to this paper as well. In a certain sense, the work in this paper is the subgradient counterpart to Rosen's [9] "Part II: Non-linear constraints" paper. The algorithm proposed here avoids the possibility of "jamming," a situation where the generated sequence clusters or even converges to non-optimal points. For the original gradient projection [9] this possibility is not excluded. The algorithms of Wolfe [12] and Lemarechal [2] generalize classical methods of unconstrained optimization in the differentiable case to the corresponding non-differentiable case by replacing the gradient with an appropriately chosen subgradient. This paper accomplishes the analogous task for the constrained case with the attendant complications. Our algorithm also generalizes the work of Rosen [9] and Polak [4] and is an extension of the algorithm in |11|. In implementing the algorithm we will have to compute only certain portions of the ε-subdifferentials. This is easily accomplished here, in contrast to some algorithms in the literature, where the complete ε subdifferential is called for. The complete ε-subdifferential uses non-local information and in general it is a prohibitive task to compute it. The proof that the algorithm converges is somewhat involved and is given in Sections 5
and 6. The computational details and experience with the algorithm is reported in paper $|3|$. The computational details in $|10|$ apply directly to our earlier paper $|11|$, but many details in $|10|$ definitely have implications to this paper as well.

2. Problem

We consider the following problem. Let $\Omega \subset i$ " be a nonempty open convex subset and $f, g_{i}, v_{j}: \Omega \rightarrow \mathbb{F}, i=1 \ldots, m: j=1 \ldots ., r$ all be convex differentiable functions on Ω. Let

$$
X=\left\{x \in \Omega \mid g_{i}(x) \leqslant 0, i=1 \ldots . . m\right\}
$$

be bounded and assume that Slater's constraint qualification (SQ) is satisfied:

$$
\begin{align*}
& \text { There exists some } a \in X \text { such that } \tag{SQ}\\
& g_{i}(a)<0 . \quad i=1 \ldots . . m .
\end{align*}
$$

Let f be strictly convex also, i.e..

$$
2 f((x+y) / 2)<f(x)+f(y), \quad x, y \in X . \quad x \neq y
$$

Let

$$
v(x)=\max \left\{v_{j}(x) \mid 1 \leqslant j \leqslant r\right.
$$

Our problem is to minimize $f(x)+v(x)$ subject to the constraint $x \in X$. We denote this problem by (P). More explicitly,

$$
\begin{array}{ll}
g_{i}(x) \leqslant 0, & i=1 \ldots ., m . \tag{P}\\
f(x)+v(x) & (\min) .
\end{array}
$$

Note that f, g_{i}, v_{j} are all continuously differentiable because they are convex and differentiable on open Ω.

3. Notation

Let $x \in X$ and $\varepsilon \geqslant 0$. We detine the sets of indices $I_{\varepsilon}(x)$ and $J_{\varepsilon}(x)$ by

$$
\begin{align*}
& I_{c}(x)=\left\{1 \leqslant i \leqslant m \mid g_{i}(x) \geqslant-\varepsilon\right\} . \tag{3.1}\\
& J_{\varepsilon}(x)=\left\{1 \leqslant j \leqslant r \mid v_{j}(x) \geqslant v(x)-\varepsilon\right\} . \tag{3.2}
\end{align*}
$$

Naturally,

$$
\begin{equation*}
I_{0}(x)=\left\{1 \leqslant i \leqslant m \mid g_{i}(x)=0\right\}, \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{0}(x)=\left\{1 \leqslant j \leqslant r \mid v_{j}(x)=v(x)\right\} . \tag{3.4}
\end{equation*}
$$

Using these index sets we define the following convex subsets

$$
\begin{equation*}
C_{\varepsilon}(x)=\operatorname{cone}\left\{\nabla g_{i}(x) \mid i \in I_{\varepsilon}(x)\right\}, \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{\varepsilon}(x)=\operatorname{conv}\left\{\nabla v_{j}(x) \mid j \in J_{\varepsilon}(x)\right\} . \tag{3.6}
\end{equation*}
$$

Here and elsewhere we denote by cone S the convex cone generated by S with apex at 0 , and by conv S the convex hull of the set S. Note that when S is empty, cone $S=\{0\}$, whereas conv S is empty.

For any non-empty closed convex subset $S \subset \mathbb{R}^{d}$ there is a unique point $a \in S$ nearest to the origin, which we denote by $N[S]$. The point $a=N[S]$ is characterized by the inequality

$$
\begin{equation*}
a x \geqslant|a|^{2} \quad \text { for all } \quad x \in S \tag{3.7}
\end{equation*}
$$

Here and henceforth the standard Euclidean inner product of two vectors in \mathbb{F}^{d} is denoted simply by juxtaposing the vectors. The corresponding Euclidean length is denoted by $|\cdot|$.

4. Algorithm

In this section we present a subgradient projection algorithm for solving problem (P). We start by doing a simple unconstrained minimization of the C^{1} function f. Then we carry out the iterative scheme of the main algorithm, the subgradient projection algorithm.

4.1. Algorithm.

Step 1. Do an unconstrained minimization of the function f, say, using a method of conjugate gradient descents. If no minimizer exists in Ω GO TO Step 3. If minimizer c exists, check whether $c \in X$. If $c \notin X$, GO TO Step 3. If $c \in X$, proceed.

Step 2. Compute $\nabla v_{j}(c), j=1, \ldots, r$. If $\nabla v_{j}(c)=0$ for every j, STOP; c is the unique minimizer of problem (P). If $\nabla v_{j}(c) \neq 0$ for some j, proceed.

Step 3. Start with arbitrary $x_{0} \in X$ and $k=0$. Let $\varepsilon_{0}>0$ be such that $\varepsilon_{0}<-\max _{1 \leqslant i \leqslant m} g_{i}(a)$. Set $\varepsilon=\varepsilon_{0}$. (Recall that a is known, a priori, in the problem.)

Step 4. Compute $y_{0}=N\left|\nabla f\left(x_{k}\right)+K_{0}\left(x_{k}\right)+C_{0}\left(x_{k}\right)\right|$. If $y_{0}=0$, STOP: x_{k} is the solution of problem (P). If $y_{0} \neq 0$, proceed.

Step 5. Compute $y_{\varepsilon}=N\left|\nabla f\left(x_{k}\right)+K_{\varepsilon}\left(x_{k}\right)+C_{\varepsilon}\left(x_{k}\right)\right|$.
Step 6. If $\left|y_{\varepsilon}\right|^{2}>\varepsilon$, set $\varepsilon_{k}=\varepsilon, s_{k}=y_{\varepsilon}$ and GO TO Step 8 .
Step 7. Replace ε by $\varepsilon / 2$ and GO TO Step 5.
Step 8. Let $I=I_{\varepsilon_{k}}\left(x_{k}\right)$. If I is empty, let $u_{k}=0$ and $M_{k}=0$. If l is non-empty, let $\gamma_{i j}=\nabla g_{i}\left(x_{k}\right) \nabla g_{j}\left(x_{k}\right), i, j \in l$. Solve the linear program

$$
\begin{aligned}
& \stackrel{\forall}{\forall} \forall_{i j} \mu_{i} \geqslant\left|\nabla g_{j}\left(x_{k}\right)\right|, \quad j \in I . \\
& \mu_{i} \geqslant 0, \quad i \in I . \\
& \sum_{i \in I} \mu_{i} \quad(\min) .
\end{aligned}
$$

It is shown later that this linear program has a minimal solution $\left(\bar{\mu}_{i}\right)$. Let

$$
u_{k}=\sum_{i \in 1} \bar{u}_{i} \nabla g_{i}\left(r_{k}\right) .
$$

Set

$$
\left.M_{k}=\| \nabla f\left(x_{k}\right)\left|+\max _{1 \leqslant j \leqslant r}\right| \nabla v_{j}\left(x_{k}\right) \mid\right\} \mid u_{k}
$$

Step 9. Let $\lambda_{k}=\left|s_{k}\right|^{2} /\left(2 M_{k}+1\right)$ and $t_{k}=s_{k}+\lambda_{k} u_{k}$.
Step 10. Find $\bar{\alpha}_{k}$. where

$$
\bar{\alpha}_{k}=\max \left\{a \mid x_{k} \cdots u t_{k} \in X, g_{i}\left(x_{k}-\alpha t_{k}\right) \leqslant g_{i}\left(x_{k}\right) . \forall i \in I\right.
$$

It will be shown that $\bar{\alpha}_{k}>0$.
Step 11. Find $\alpha_{k} \in\left|0, \bar{\alpha}_{k}\right|$ such that there exists

$$
z_{k} \in \nabla f\left(x_{k} \quad u_{k} t_{k}\right)+K_{0}\left(x_{k}-a_{k} t_{k}\right) .
$$

with

$$
z_{k} t_{k}=0 .
$$

If no such z_{k} exists, set $\alpha_{k}=\bar{\alpha}_{k}$.
Step 12. Define $x_{k+1}=x_{k}-\alpha_{k} t_{k}$. Increment k by 1 and GOTO Step 4.
4.2. Note that any method of finding the critical points of smooth convex f, the zeros of the equation $\nabla f(x)=0$, may be substituted for Step 1 above. This would be particularly useful when f has a nice analytic expression. The unconstrained minimization is done at the start to exclude a very special easy case of problem (P). (See Lemmas 5.10 and 6.6.)
4.3. In practice to improve the convergence of the algorithm one may wish to reset $\varepsilon=\varepsilon_{0}$ in Step 4 during the initial iteration cycles of the algorithm. This should avoid the possibility of taking small steps when one is not "near" the optimal solution. After these iterations we revert back to the algorithm as given above with a minor change. We set $\varepsilon=\varepsilon_{0}$ in Step 3, but instead of using an arbitrary $x_{0} \in X$ to start the algorithm, we take x_{0} to be the last available x_{k}. These changes do not affect our convergence proof, though, strictly speaking, in Sections 5 and 6 we will have to say that $\left(\varepsilon_{k}\right)$ is eventually non-increasing, in place of $\left(\varepsilon_{k}\right)$ is non-increasing.
4.4. Steps 4 and 5 can be implemented as special quadratic programs, as was done in Rubin [10]. Step 11 requires a properly constructed line search, some comparisons and univariate minimizations. See Rubin $|10|$ and Owens $[3]$. In practice, the statement, "if $y_{0}=0$, STOP" in Step 4 will be replaced by "STOP, if $\left|y_{0}\right| \leqslant \eta, " \eta>0$, a stopping rule parameter. Also obvious practical modifications for stopping in Step 2 will have to be included in a computer program. For computational details and experience we refer to the paper by Owens $|3|$.
4.5. By increasing the dimension of the constraint space by 1 and by increasing the number of constraints by r one can rewrite (P) as a differentiable convex program to which Polak $|4|$ is applicable, e.g.,

$$
\begin{cases}g_{i}(x) \leqslant 0, & i=1, \ldots, m \\ v_{j}(x) \leqslant y, & j=1, \ldots, r \\ f(x)+y & (\min)\end{cases}
$$

Let us mention some of the basic differences between our algorithm and Polak's. Our procedure faces lower dimensional subproblems. Incidentally, we believe this to be a reason for the comparatively rapid convergence we found with our algorithm on problems tested (see [3]). Our method also addresses non-differentiability directly. See also remarks in Rockafellar [7, pp. 2-3] in connection with this point of view. Polak projects the gradient of the differentiable objective function on the supporting tangent vector spaces. Following Rosen $[8,9]$ he constructs the appropriate projection matrices for this. In contrast we use the point in a portion of ε-subdifferential nearest to 0 , which we obtain by suitable quadratic programs. We do not stipulate a certain assumption of linear independency Sect. 4.5 of [4, paragraph 92]. Our method, like Polak's, is a method of feasible directions. However, we build feasibility in an entirely different way. Also note that ε binding maximands are not used in Step 11.
4.6. Practical implementation on the computer shows that Algorithm 4.1 is viable and applies well to a broad class of problems, linear $|10,11|$ and non-linear (see also Sect. 7). In fact, the convergence is quite good, as found by Rubin $|10|$ and Owens |3|. Owens $|3|$ retested some of the classic examples of Wolfe |12|, Powell (reported in $|12|$ and $|10|$), Wolfe |13|, Dem'yanov and Malozemov |1|, and others. Even in examples constructed to exhibit jamming the present algorithm converged quickly. On smooth problems the convergence was not any slower than some algorithms for the differentiable case with no anti-jamming precautions. Numerical results on Polak's $|4|$ algorithm appear to be unavailable. For details of these we refer to Owens $|3|$.

5. Feasibility of the Algorithm

5.0. We now turn to the task of proving that the steps in the algorithm are well formulated, i.e., are implementable and that, in fact, the algorithm converges to the solution of (P). Through a sequence of lemmas we prove feasibility of the algorithm in this section. Using these lemmas a proof that the algorithm converges is given in the next section. The proof is more involved than the corresponding proof in $|11|$.

We need some more terminology and notation. When $F:$ ir $^{d} \rightarrow|-\infty, \infty|$ is a convex function its ε-subdifferential $\dot{d}_{\varepsilon} F(x)$, where $\varepsilon \geqslant 0$, is defined by saying

$$
\begin{equation*}
u \in c_{\varepsilon} F(x) \quad \text { iff } \quad F(y) \geqslant F(x)+u(y-x)-\varepsilon, \forall \in \in d^{d} \tag{5.0.1}
\end{equation*}
$$

$\dot{o}_{0} F(x)$ is the subdifferential of F at x which we denote by $\dot{c} F(x)$. Any $u \in \partial F(x)$ is referred to as a subgradient of F at x. More explicitly, u satisfies the subgradient inequality

$$
\begin{equation*}
F(y) \geqslant F(x)+u(y-x), \quad \forall y \in l^{d} . \tag{5.0.2}
\end{equation*}
$$

Note, however, that $\partial F(x)$ can be empty. See Rockafellar $|6|$ for all these and related notions. Let χ denote the indicator function of the set X, namely $\chi(x)=0$, if $x \in X$, and $\chi(x)=\infty$, if $x \notin X$. Then $F=f+v+\chi$ is convex on the whole space and minimizing $F(x), x \in \mathbb{R}^{d}$ is equivalent to the constrained minimization problem (P). We keep the earlier notation and formulate the lemmas. We begin by collecting some properties of the index sets introduced in Section 3.
5.1. Lemma. To each $x \in X$ and $\varepsilon \geqslant 0$ there is a neighborhood V of x such that

$$
\begin{equation*}
I_{\epsilon}(y) \subset I_{\varepsilon}(x), \quad \forall y \in V \cap X \tag{5.1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{\varepsilon}(y) \subset J_{\varepsilon}(x), \quad \forall y \in V \cap X \tag{5.1.2}
\end{equation*}
$$

Proof. We verify (5.1.1). For every $i \notin I_{\varepsilon}(x), g_{i}(x)<-\varepsilon$. Hence there is a neighborhood V of x such that $g_{i}(y)<-\varepsilon$, for every $y \in V \cap X$. This means that $i \notin I_{\epsilon}(y)$, proving (5.1.1). Analogously one proves (5.1.2) by considering the functions $w_{j}=v_{j}-v$.
5.2. Lemma. Given $x \in X$, there exists $\rho>0$ such that

$$
\begin{array}{lll}
I_{\varepsilon}(x)=I_{0}(x) & \text { for } & 0 \leqslant \varepsilon \leqslant \rho \\
J_{\varepsilon}(x)=J_{0}(x) & \text { for } & 0 \leqslant \varepsilon \leqslant \rho \tag{5.2.2}
\end{array}
$$

Proof. Given $x \in X$, note that

$$
\begin{equation*}
I_{0}(x) \subset I_{\varepsilon}(x) \subset I_{\rho}(x) \quad \text { if } \quad 0 \leqslant \varepsilon \leqslant \rho \tag{5.2.3}
\end{equation*}
$$

In case $I_{0}(x)=\{1, \ldots, m\}$, the lemma is clear. Hence assume that $\{1, \ldots, m\} \backslash I_{0}(x)$ is non-empty. In this case, there exists $\rho>0$ such that

$$
\max _{i \notin I_{0}(x)} g_{i}(x)<-\rho
$$

This implies that whenever $i \notin I_{0}(x)$, then $i \notin I_{\rho}(x)$. In view of (5.2.3) we conclude $I_{0}(x)=I_{p}(x)$ and (5.2.1) follows. By considering $v_{j}-v$ analogously we see the validity of (5.2.2).
5.3. Lemma. Let $x_{k} \in X$ and $\left(x_{k^{\prime}}\right)$ a subsequence such that $x_{k^{\prime}} \rightarrow x \in X$ and $\varepsilon_{k^{\prime}} \downarrow 0$. Then

$$
I_{\varepsilon_{k}}\left(x_{k^{\prime}}\right) \subset I_{0}(x) \quad \text { for all sufficiently large } k^{\prime}
$$

Proof. We may assume that $\{1, \ldots, m\} \backslash I_{0}(x)$ is nonempty. There exists $\varepsilon>0$ such that

$$
\begin{equation*}
\max _{i \notin I_{0}(x)} g_{i}(x)<-\varepsilon \tag{5.3.1}
\end{equation*}
$$

Let $i \notin I_{0}(x)$ so that $g_{i}(x)<0$. Then $g_{i}\left(x_{k^{\prime}}\right)<0$ for k^{\prime} sufficiently large, for all $i \notin I_{0}(x)$. Also $\varepsilon_{k^{\prime}}<\varepsilon$ for all k^{\prime} sufficiently large. If possible, let $i \in$ $I_{e_{k^{\prime}}}\left(x_{k^{\prime}}\right) \backslash I_{0}(x)$; we shall derive a contradiction. Since $i \in I_{\varepsilon_{k^{\prime}}}\left(x_{k^{\prime}}\right)$,

$$
g_{i}\left(x_{k^{\prime}}\right) \geqslant-\varepsilon_{k^{\prime}}>-\varepsilon .
$$

Hence $g_{i}(x) \geqslant-\varepsilon$. Since $i \notin I_{0}(x)$, this contradicts (5.3.1), completing the proof.
5.4. Lemma. Let $x_{k} \in X$ and $\varepsilon_{k} \downarrow \varepsilon>0$. Suppose that $\left(x_{k}\right)$ is a subsequence of $\left(x_{k}\right)$ converging to x. Then for the subsequence $\left(x_{k}\right)$ we have

$$
\begin{equation*}
I_{0}(x) \subset I_{\varepsilon_{k}}\left(x_{k}\right) \quad \text { for all } k^{\prime} \text { sufficiently large. } \tag{5.4.1}
\end{equation*}
$$

Similarly, $J_{0}(x) \subset J_{\varepsilon_{k}}\left(x_{k}\right)$. for all k^{\prime} sufficiently large.
Proof. Let $i \in I_{0}(x)$. Since $g_{i}(x)=0,0 \geqslant g_{i}\left(x_{h}\right) \rightarrow 0 ;$ and hence $g_{i}\left(x_{k}\right) \geqslant-\varepsilon$ for all k^{\prime} sufficiently large. For these sufficiently large k^{\prime}. we see that $g_{i}\left(x_{k^{\prime}}\right) \geqslant-\varepsilon_{k^{\prime}}$. which proves the lemma.
5.5. Lemma. For each $x \in X$ and $\varepsilon>0$. there exists $a \delta>0$ such that

$$
J_{0}(x) \subset J_{\varepsilon}(y) \quad \text { whenever } \quad \mid x-y<\delta, \quad y \in X
$$

Proof. This is essentially the same as Lemma 5.6 in $|11|$.
5.6. Lemma. For all $\varepsilon \geqslant 0$ and $x \in X, K_{\varepsilon}(x) \subset \dot{c}_{\varepsilon} x(x)$.

Proof. Trivial changes in the proof of Lemma 5.1 in $|11|$ yields this lemma.
5.7. Lemma. $\quad \dot{c}(x)=K_{0}(x)$ for every $x \in X$.

Proof. This is a known result. See. for example. |5|. Also, minor alteration in the proof of Lemma 5.4 in $|11|$ yields a direct simple proof of this lemma.
5.8. From the last lemma and $|6|$ we immediately see that

$$
\begin{equation*}
v^{\prime}(x, y)=\max \left\{u y \mid u \in K_{0}(x)\right\} . \tag{5.8.1}
\end{equation*}
$$

where $v^{\prime}(x ; y)=\lim _{\alpha, 0}\{c(x+\alpha y)-v(x)\} / \alpha$ is the directional derivative of v at x in the direction \because.

5.9. Lemma. $\hat{O} F(x)=\nabla f(x)+K_{0}(x)+C_{0}(x)$ for all $x \in X$.

Proof. The functions $f . v$ and the indicator function χ of the set X are proper and convex. It is well known that for $x \in X, \mathscr{\partial} \chi(x)=C_{0}(x)$. Since X has non-empty interior by Rockafellar $|6|$ the lemma follows.

The next two lemmas show that the stopping criteria in Steps 2 and 4 of the algorithm are well chosen.
5.10. Lemma. If $c \in X$ is such that $\nabla f(c)=\nabla v_{j}(c)=0, j=1, \ldots, r$, then c is the minimizer of F.

Proof. In this case $K_{0}(c)=\{0\}$, because each $\nabla v_{j}(c)=0$. Aiso since $\nabla f(c)=0$, we see that $0 \in \partial F(c)$, as $0 \in C_{0}(c)$. This implies that c is a minimizer of F, uniqueness of c is ensured by the strict convexity of F.
5.11. Lemma. If $y_{0}=0$ in Step 4 of the algorithm, then x_{k} is the minimizer of F.

Proof. $y_{0}=0$ implies that $0 \in \partial F\left(x_{k}\right)$, a necessary and sufficient condition for x_{k} to minimize F. The strict convexity of f ensures that the minimizer of F is unique.
5.12. Lemma. Step 7 of the algorithm is not executed infinitely often in any one iteration.

Proof. If Step 7 is executed infinitely often in a certain iteration then the index k remains unchanged from that iteration onwards. By Lemma 5.2 there exists arbitrarily small $\varepsilon>0$ such that $I_{\varepsilon}\left(x_{k}\right)=I_{0}\left(x_{k}\right)$ and $J_{\varepsilon}\left(x_{k}\right)=J_{0}\left(x_{k}\right)$. Due to expressions (3.1), (3.2), (3.3), and (3.4)

$$
\nabla f\left(x_{k}\right)+K_{e}\left(x_{k}\right)+C_{e}\left(x_{k}\right)=\nabla f\left(x_{k}\right)+K_{0}\left(x_{k}\right)+C_{0}\left(x_{k}\right),
$$

for such ε. Hence we find that $y_{0}=y_{\varepsilon}$ for arbitrarily small $\varepsilon>0$. Since Step 7 is executed indefinitely and $\varepsilon \downharpoonright 0$, we must have $y_{\varepsilon} \rightarrow 0$. Hence $y_{0}=0$; in which case we could not have reached Step 7 at all; a contradiction.
5.13. Step 8 of the algorithm in general requires the solution of a linear program. We have to show that this linear program has a minimal solution. We do this now. Recall that one says that a convex cone C is pointed iff C contains no lines or equivalently $C \cap(-C)=\{0\}$.
5.14. Lemma. Let a_{1}, \ldots, a_{n} be nonzero vectors such that cone $\left\{a_{1}, \ldots, a_{n}\right\}$ is pointed. Let $\Gamma=\left|\gamma_{i j}\right|$ be the $n \times n$ Gramian matrix, where $\gamma_{i j}=a_{i} a_{j}$. Then the linear programming problem

$$
\begin{align*}
\frac{\bigvee \gamma_{i j} \mu_{i} \geqslant\left|a_{j}\right|,}{} & j=1, \ldots, n, \\
\mu_{i} \geqslant 0, & i=1, \ldots, n, \tag{5.14.1}\\
\mu_{1}+\cdots+\mu_{n} & \text { (min) }
\end{align*}
$$

has a minimizer.
Proof. We first show that (5.14.1) is feasible. For this purpose consider the auxiliary linear programming problem

$$
\begin{gather*}
(\Gamma \mu)_{j} \geqslant\left|a_{j}\right| \\
\mu_{i} \geqslant 0 \tag{5.14.2}\\
0 \mu \quad(\min) .
\end{gather*}
$$

Here $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$. Note that $\Gamma=A^{\prime} A$, where A is the matrix whose columns are $a_{1} \ldots, a_{n}$ and A^{\prime} denotes the transpose of A. Hence, the linear program dual to (5.14.2) is

$$
\begin{align*}
(I \lambda)_{j} \leqslant 0, & \lambda_{i} \geqslant 0 \tag{5.14.3}\\
\lambda_{1}\left|a_{1}+\cdots+i_{n}\right| a_{n} \mid & (\max) .
\end{align*}
$$

Clearly 0 is feasible for (5.14.3). We now show that 0 is a maximal solution of (5.14.3) with value 0 and hence its dual (5.14.2) also has an optimal solution with value zero. This then would show that (5.14.2) is feasible. If i is any vector feasible for $(5.14 .3)$, then $\lambda \Gamma \lambda \leqslant 0$, i.e.. $\lambda A^{\prime} A \lambda \leqslant 0$. This yields $|A \lambda|^{2} \leqslant 0$ and hence $A \lambda=0$. Since the cone $\left\{a_{1}, \ldots . a_{n}\right\}$ is pointed with $i \geqslant 0$. this implies $\lambda=0$: proving that 0 is the only feasible solution of (5.14.3) and therefore 0 is the optimal solution of (5.14.3). The feasibility of (5.14.1) is now clear.

The linear program dual to (5.14.1) is the problem

$$
\begin{align*}
(\Gamma \lambda)_{i} \leqslant 1, & j=1 \ldots, n . \\
\hat{\lambda}_{i} \geqslant 0, & i=1 \ldots ., n . \tag{5.14.4}\\
\hat{\lambda}_{1}\left|a_{1}\right|+\cdots+\lambda_{n}\left|a_{n}\right| & (\max) .
\end{align*}
$$

The vector $\lambda=0$ is clearly feasible for (5.14.4). This, in view of the just proven feasibility of (5.14.1) and the duality theorem of linear programming. implies that (5.14.1) has an optimal solution, completing the proof of the lemma.

We next find an upper bound for the value of problem (5.14.1) and then use this to obtain an upper bound for the length of the vector $\bar{\mu}_{1} a_{1}+\cdots+\bar{\mu}_{n} a_{n}$, where $\left(\bar{\mu}_{1}, \ldots ., \bar{\mu}_{n}\right)$ is a minimal solution of (5.14.1).
5.15. Lemma. Let a_{1}, \ldots, a_{n} be as in Lemma 5.14. Let $e_{i}=a_{i j} \mid a_{i}$. $E=$ conv $\left\{e_{j} \mid 1 \leqslant j \leqslant n\right\}$, and $w=N|E|$. Let

$$
\begin{equation*}
u=\bar{\mu}_{1} a_{1}+\cdots+\bar{\mu}_{n} a_{n} . \tag{5.15.1}
\end{equation*}
$$

where $\left(\bar{\mu}_{1}, \ldots, \bar{\mu}_{n}\right)$ is a minimizer of (5.14.1). Then

$$
\begin{equation*}
1 \leqslant|u| \leqslant\left(\max _{i}\left|a_{i}\right|\right) /\left(|w|^{2} \min _{i}\left|a_{i}\right|\right) . \tag{5.15.2}
\end{equation*}
$$

Proof. Since the cone $\left\{a_{1} \ldots . . a_{n}\right\}$ is pointed, it is easily seen that $0 \notin E$ and hence $w \neq 0$. By (3.7), wz $\geqslant|w|^{2}, \forall z \in E$. This yields the inequality

$$
\begin{equation*}
w a_{j} \geqslant|w|^{2}\left|a_{j}\right|, \quad \forall j . \tag{5.15.3}
\end{equation*}
$$

Now there exist $\lambda_{i} \geqslant 0, \sum \lambda_{i}=1$ such that $w=\sum \lambda_{i} e_{i}$. For these λ_{i}, by (5.15.3) we have

$$
\begin{equation*}
\sum_{i} \lambda_{i}\left(a_{i} a_{j}\right) /\left|a_{i}\right| \geqslant|w|^{2}\left|a_{j}\right| \tag{5.15.4}
\end{equation*}
$$

If we define μ_{i} by $\mu_{i}=\lambda_{i} /\left(\left|a_{i}\right||w|^{2}\right)$, then (5.15.4) shows that $\left(\mu_{1}, \ldots, \mu_{n}\right)$ is feasible for (5.14.1) and hence

$$
\begin{align*}
\sum_{i} \bar{\mu}_{i} & \leqslant \sum_{i} \mu_{i}=|w|^{-2} \sum_{i} \lambda_{i} /\left|a_{i}\right| \\
& \leqslant|w|^{-2} /\left(\min _{i}\left|a_{i}\right|\right) \tag{5.15.5}
\end{align*}
$$

Hence

$$
\begin{aligned}
|u| & =\left|\sum \bar{\mu}_{i} a_{i}\right| \leqslant \Sigma \bar{\mu}_{i}\left|a_{i}\right| \\
& \leqslant\left(\max _{i}\left|a_{i}\right|\right) \leq \bar{\mu}_{i} \\
& \leqslant\left(\max _{i}\left|a_{i}\right|\right) /\left(|w|^{2} \min _{i}\left|a_{i}\right|\right) .
\end{aligned}
$$

Also from the relation $\sum_{i} \gamma_{i i} \bar{\mu}_{i} \geqslant\left|a_{j}\right|$ in (5.14.1) we get $\left(\sum_{i} \bar{\mu}_{i} a_{i}\right) a_{i} \geqslant\left|a_{i}\right|$, i.e., $\left|a_{j}\right| \leqslant u a_{j}$. By Schwarz's inequality we get $|u| \geqslant 1$, since $a_{j} \neq 0$, $\forall j$. This completes the verification of (5.15.2).
5.16. Lemma. Let $\varepsilon_{0}>0$ be as in Step 3 of the algorithm and x any point in X. Then the cone $C_{\varepsilon}(x)$ is pointed for $0 \leqslant \varepsilon \leqslant \varepsilon_{0}$. Moreover, $\nabla g_{i}(x) \neq 0, \forall i \in I_{i}(x)$.

Proof. Since $0 \leqslant \varepsilon \leqslant \varepsilon_{0}<-\max _{1 \leqslant i \leqslant m} g_{i}(a)$ we see that $g_{i}(a)<-\varepsilon$, $\forall i$, so that $I_{\varepsilon}(a)$ is empty and hence $C_{\varepsilon}(a)=\{0\}$. The statement $\nabla g_{i}(a) \neq 0$, $\forall i \in I_{\varepsilon}(a)$ is indeed true. The lemma needs no proof if $I_{\varepsilon}(x)$ is empty. So consider the case when $I_{\varepsilon}(x)$ is nonempty. In this case $x \neq a$. Put $u=a-x$. Now

$$
g_{i}(a) \geqslant g_{i}(x)+\nabla g_{i}(x)(a-x) \geqslant-\varepsilon+\nabla g_{i}(x) u, \quad \forall i \in I_{\varepsilon}(x)
$$

Hence

$$
\begin{equation*}
\nabla g_{i}(x) u \leqslant g_{i}(a)+\varepsilon<0, \quad \forall i \in I_{\varepsilon}(x) . \tag{5.16.1}
\end{equation*}
$$

This shows that $\nabla g_{i}(x) \neq 0$ for every $i \in I_{E}(x)$. Also, if $z=\sum \lambda_{i} \nabla g_{i}(x)$, where $\lambda_{i} \geqslant 0, i \in I_{\varepsilon}(x)$, then $z u<0$, if $\lambda_{i}>0$ for some $i \in I_{\varepsilon}(x)$. Hence $z u<0$ for every nonzero z in $C_{\varepsilon}(x)$, proving that $C_{6}(x)$ is pointed; for $z,-z \in C_{\varepsilon}(x)$ implies that $z=0$.
5.17. Lemma. Let $\varepsilon_{k}>0$ be as in the algorithm. $I_{k_{k}}\left(x_{k}\right)$ nonempty, and u_{k} be as defined in Step 8 of the algorithm. Then

$$
\begin{align*}
& \text { (i) } u_{k} s_{k} \geqslant 0 \tag{5.17.1}\\
& \text { (ii) } \nabla g_{i}\left(x_{k}\right) u_{k} \geqslant\left|\nabla g_{i}\left(x_{k}\right)\right|, \quad i \in I_{i_{k}}\left(x_{h}\right) . \tag{5.17.2}
\end{align*}
$$

where s_{k} is defined in Step 6 of the algorithm.
Proof. Since $s_{k}=N\left|\nabla f\left(x_{k}\right)+K_{\varepsilon_{k}}\left(x_{k}\right)+C_{\varepsilon_{k}}\left(x_{k}\right)\right|$. for $i \in I_{\varepsilon_{k}}\left(x_{k}\right)$. both s_{k} and $s_{k}+\nabla g_{i}\left(x_{k}\right)$ belong to $\nabla f\left(x_{k}\right)+K_{c_{k}}\left(x_{k}\right)+C_{v_{k}}\left(x_{k}\right)$. By (3.7) then $s_{k}\left(s_{k}+\nabla g_{i}\left(x_{k}\right)-s_{k}\right) \geqslant 0$. Thus

$$
\begin{equation*}
\nabla g_{i}\left(x_{k}\right) s_{k} \geqslant 0 . \quad \forall i \in I_{\varepsilon_{k}}\left(x_{k}\right) . \tag{5.17.3}
\end{equation*}
$$

By Lemma $5.16 C_{\varepsilon_{k}}\left(x_{k}\right)$ is pointed and hence by Lemma 5.14 the linear program in Step 8 of the algorithm has an optimal solution $\left(\bar{\mu}_{i}\right)$ such that

$$
u_{k}=\sum\left|\bar{u}_{i} \nabla g_{i}\left(x_{k}\right)\right| i \in I_{\varepsilon_{k}}\left(x_{k}\right) \mid
$$

This with (5.17.3) implies (5.17.1). If $\Gamma=\left|\gamma_{i j}\right|$, where $\gamma_{i j}=\nabla g_{i}\left(x_{k}\right) \nabla g_{i}\left(x_{k}\right)$. then by the linear program in Step 8

$$
\left|\nabla g_{i}\left(x_{k}\right)\right| \leqslant(\bar{\mu} \Gamma)_{i}=\nabla g_{i}\left(x_{k}\right) u_{k}
$$

This is inequality (5.17.2), completing the proof.
5.18. Lemma. Let $s_{k} \neq 0$ and $t_{k}=s_{k}+\lambda u_{k}, u_{k}$ as in Lemma 5.17. Then $-t_{k}$ is a feasible direction at x_{k} for every $\lambda>0$.

Proof. If $I_{0}\left(x_{k}\right)$ is empty then every direction is feasible at x_{k}. So assume that $I_{0}\left(x_{k}\right)$ is non-empty. By convexity of X, if the lemma were false, then there is $\delta>0$ such that $x_{k}-\alpha t_{k} \notin X, 0<\alpha \leqslant \delta$. There exists $i \in I_{0}\left(x_{k}\right)$ such that $g_{i}\left(x_{k}-\alpha t_{k}\right)>0,0<\alpha \leqslant \delta$. This yields

$$
g_{l}\left(x_{k}-\alpha t_{k}\right)-g_{l}\left(x_{k}\right)>0 . \quad 0<\alpha \leqslant \delta .
$$

Dividing by $\alpha>0$ and allowing $a \downarrow 0$ we get $\nabla g_{i}\left(x_{k}\right) t_{k} \leqslant 0$. But by the previous lemma

$$
\nabla g_{i}\left(x_{k}\right) t_{k}=\nabla g_{i}\left(x_{k}\right) s_{k}+\lambda \nabla g_{i}\left(x_{k}\right) u_{k}>0 . \quad \forall \lambda>0 .
$$

a contradiction.
5.19. Lemma. Let $s_{k} \neq 0$ and λ_{k}, t_{k} be as in Step 9 of the algorithm. Then $-t_{k}$ is a feasible direction of strict descent at x_{k}.

Proof. Note that if $I_{\varepsilon_{k}}\left(x_{k}\right)$ is empty then $u_{k}=0$ so that t_{k} reduces to s_{k} in this case. The directional derivative of a convex function is a sublinear function of the direction, hence

$$
\begin{align*}
F^{\prime}\left(x_{k} ;-t_{k}\right) & =F^{\prime}\left(x_{k} ;-s_{k}-\lambda_{k} u_{k}\right) \\
& \leqslant F^{\prime}\left(x_{k} ;-s_{k}\right)+\lambda_{k} F^{\prime}\left(x_{k} ;-u_{k}\right) \tag{5.19.1}
\end{align*}
$$

By (5.8.1)

$$
\begin{equation*}
v^{\prime}\left(x_{k} ;-w\right)=\max \left\{-w y \mid y \in K_{0}\left(x_{k}\right)\right\} . \tag{5.19.2}
\end{equation*}
$$

Hence

$$
\begin{align*}
F^{\prime}\left(x_{k} ;-s_{k}\right) & =f^{\prime}\left(x_{k} ;-s_{k}\right)+v^{\prime}\left(x_{k} ;-s_{k}\right) \\
& =-\nabla f\left(x_{k}\right) s_{k}+\max \left\{-s_{k} y \mid y \in K_{0}\left(x_{k}\right)\right\} \\
& =-\min \left\{\left(\nabla f\left(x_{k}\right)+y\right) s_{k} \mid y \in K_{0}\left(x_{k}\right)\right\} . \tag{5.19.3}
\end{align*}
$$

Since $K_{0}\left(x_{k}\right) \subset K_{\varepsilon_{k}}\left(x_{k}\right), \nabla f\left(x_{k}\right)+y \in \nabla f\left(x_{k}\right)+K_{\varepsilon_{k}}\left(x_{k}\right)+C_{\varepsilon_{k}}\left(x_{k}\right)$, and so by (3.7),

$$
\begin{equation*}
s_{k}\left(\nabla f\left(x_{k}\right)+y\right) \geqslant\left|s_{k}\right|^{2} \tag{5.19.4}
\end{equation*}
$$

By (5.19.3) and (5.19.4) we see that

$$
\begin{equation*}
F^{\prime}\left(x_{k} ;-s_{k}\right) \leqslant-\left|s_{k}\right|^{2} \tag{5.19.5}
\end{equation*}
$$

Again by (5.19.2)

$$
\begin{align*}
v^{\prime}\left(x_{k} ;-u_{k}\right) & =\max \left\{-u_{k} y \mid y \in K_{0}\left(x_{k}\right)\right\} \\
& =\max \left\{-\nabla v_{j}\left(x_{k}\right) u_{k} \mid j \in J_{0}\left(x_{k}\right)\right\} . \tag{5.19.6}
\end{align*}
$$

By (5.19.1), (5.19.5), and (5.19.6) we arrive at

$$
\begin{equation*}
F^{\prime}\left(x_{k} ;-t_{k}\right) \leqslant-\left|s_{k}\right|^{2}+\lambda_{k}\left\{-\nabla f\left(x_{k}\right) u_{k}+\max _{j \in J_{0}\left(x_{k}\right)}\left(-\nabla v_{j}\left(x_{k}\right) u_{k}\right)\right\} . \tag{5.19.7}
\end{equation*}
$$

Now

$$
\begin{align*}
& \left\{-\nabla f\left(x_{k}\right) u_{k}+\max _{j \in J_{0}\left(x_{k}\right)}\left(-\nabla v_{j}\left(x_{k}\right) u_{k}\right)\right\} \\
& \quad \leqslant\left\{\left|\nabla f\left(x_{k}\right)\right|+\max _{j \in J_{0}\left(x_{k}\right)}\left|\nabla v_{j}\left(x_{k}\right)\right|\right\}\left|u_{k}\right| \\
& \quad \leqslant\left\{\left|\nabla f\left(x_{k}\right)\right|+\max _{1 \leqslant j \leqslant r}\left|\nabla v_{j}\left(x_{k}\right)\right|\right\}\left|u_{k}\right| \\
& \quad=M_{k} \quad \text { by Step } 8 \text { of the algorithm. } \tag{5.19.8}
\end{align*}
$$

By Step 9 of the algorithm $\lambda_{k}=\left|s_{k}\right|^{2} /\left(2 M_{k}+1\right)$; hence

$$
\begin{align*}
F^{\prime}\left(x_{k} ;-t_{k}\right) & \leqslant-\left|s_{k}\right|^{2}+M_{k}\left|s_{k}\right|^{2} /\left(2 M_{k}+1\right) \\
& \leqslant-\left|s_{k}\right|^{2} / 2<0 . \tag{5.19.9}
\end{align*}
$$

This inequality proves the lemma because $-t_{k}$ is feasible by Lemma 5.18 .
5.20. Lemma. The number \bar{a}_{k} defined in Step 7 of the algorithm is positive.

Proof. If $I_{\varepsilon_{k}}\left(x_{k}\right)$ is empty then in view of Lemma 5.18 the lemma is clear. So consider the case when $I_{\mathrm{E}_{k}}\left(x_{k}\right)$ is not empty. Using (5.17.3) and (5.17.2) we see that for $i \in I_{c_{k}}\left(x_{k}\right)$

$$
\begin{align*}
\nabla g_{i}\left(x_{i}\right) t_{k} & =\nabla g_{i}\left(x_{k}\right) s_{k}+\lambda_{k} \nabla g_{i}\left(x_{k}\right) u_{k} \\
& \geqslant \lambda_{k}\left|\nabla g_{i}\left(x_{k}\right)\right| . \tag{5.20.1}
\end{align*}
$$

Now $\lambda_{k}>0$, since $s_{k} \neq 0$. Also by Lemma $5.16,\left|\nabla g_{i}\left(x_{k}\right)\right|>0$. This shows that there exists $\delta>0$ such that $g_{i}\left(x_{k}-\alpha t_{k}\right) \leqslant g_{i}\left(x_{k}\right), \forall i \in I_{t_{k}}\left(x_{k}\right), 0 \leqslant \alpha \leqslant \delta$. This fact with Lemma 5.18 proves that $\bar{\alpha}_{k}$ is positive.

The next two lemmas explain the choice of α_{k} and z_{k} in Step 11 of the algorithm.
5.21. Lemma. Let $s_{k} \neq 0$ and define φ on $\left|0, \bar{\alpha}_{k}\right|$ by $\varphi(\alpha)=F\left(x_{k}-u t_{k}\right)$. If $\bar{\alpha}_{k}$ is not a minimizer of φ on $\left|0, \bar{\alpha}_{k}\right|$, then z_{k} satisfying Step 11 of the algorithm exists.

Proof. This is essentially Lemma 5.12 of $|11|$ and the proof in $|11|$ carries over verbatim with s_{k} occuring in the proof of Lemma 5.12 in $|11|$ replaced by t_{k} here.

The number α_{k} determined in Step 11 of the algorithm has the following property:
5.22. Lemma. Let $s_{k} \neq 0$ and φ be as in the previous lemma. Then α_{k} is the unique minimizer of φ on $\left|0, \bar{\alpha}_{k}\right|$. Moreover, α_{k} is positive.

Proof. This corresponds to Lemma 5.13 of $|11|$ and the proof therein carries over with s_{k} replaced by t_{k}.
5.23. Corollary. Let $s_{k} \neq 0$ and $x_{k+1}=x_{k}-\alpha_{k} t_{k}$ as in Step 12 of the algorithm. Then $F\left(x_{k+1}\right)<F\left(x_{k}\right)$.

Proof. This follows from Lemma 5.22 and the observation that $F^{\prime}\left(x_{k} ;-t_{k}\right)<0$.

6. Convergence of the Algorithm

Lemmas of the previous section prove that the algorithm is feasible and that F decreases at each iteration. We now turn to lemmas leading to a convergence proof.
6.1. Lemma. Let $\bar{x} \in X$ be the minimizer of F and \bar{x} be a cluster point of the sequence $\left(x_{k}\right)$. Then $\left(x_{k}\right)$ converges to \bar{x}.

Proof. Same as proof of Lemma 5.15 of [11].
6.2. Lemma. Let 0 be a cluster point of the sequence $\left(s_{k}\right)$. Then the sequence $\left(x_{k}\right)$ converges to \bar{x}, the minimizer of F.

Proof. We pass to corresponding subsequences $\left(s_{k^{\prime}}\right)$ and $\left(x_{k^{\prime}}\right)$ such that $s_{k^{\prime}} \rightarrow 0$ and $x_{k^{\prime}} \rightarrow \hat{x} \in X$. We shall show that \hat{x} minimizes F, so that by the previous lemma $x_{k} \rightarrow \bar{x}$. Since the restriction of F to X is continuous from within X, to prove that \hat{x} is a minimizer of F, it suffices to show that $F(y) \geqslant F(\hat{x})$ for all $y \in$ int X. Note that int X is non-empty. We now verify that for every $y \in$ int X,

$$
\begin{equation*}
g_{i}(y)<0, \quad i=1, \ldots, m \tag{6.2.1}
\end{equation*}
$$

Recall that a satisfies $g_{i}(a)<0$, for every i, and hence to prove (6.2.1) we may assume that $y \neq a$. Since $y \in \operatorname{int} X$, there exists $\alpha>0$ such that $z=y+$ $\alpha(y-a) \in X$. Hence $(1+\alpha) y=z+\alpha a$ and by convexity of g_{i}

$$
(1+\alpha) g_{i}(y) \leqslant g_{i}(z)+\alpha g_{i}(a)<0,
$$

which proves (6.2.1).
By (6.2.1) we have

$$
\begin{align*}
0>g_{i}(y) & \geqslant g_{i}(\hat{x})+\nabla g_{i}(\hat{x})(y-\hat{x}) \\
& =\nabla g_{i}(\hat{x})(y-\hat{x}), \quad \forall i \in I_{0}(\hat{x}) . \tag{6.2.2}
\end{align*}
$$

Since $s_{k^{\prime}} \rightarrow 0$ the sequence $\left(\varepsilon_{k^{\prime}}\right)$ decreases to zero. Also $x_{k^{\prime}} \rightarrow \hat{x}$. Hence by Lemma 5.3

$$
\begin{equation*}
I_{\varepsilon_{k}}\left(x_{k^{\prime}}\right) \subset I_{0}(\hat{x}) \tag{6.2.3}
\end{equation*}
$$

for sufficiently large k^{\prime}. By the continuity of the function $x \rightarrow \nabla g_{i}(x)(y-x)$ at \hat{x}, the fact that $x_{k^{\prime}} \rightarrow \hat{x}$, the relations (6.2.2) and (6.2.3), we find that for sufficiently large k^{\prime}

$$
\begin{equation*}
\nabla g_{i}\left(x_{k^{\prime}}\right)\left(y-x_{k^{\prime}}\right)<0, \quad \forall i \in I_{\varepsilon_{k^{\prime}}}\left(x_{k^{\prime}}\right) \tag{6.2.4}
\end{equation*}
$$

At this stage we complete the proof of this lemma by repeating the reasoning from Eq. (5.16.3) onwards of Lemma 5.16 of $|11|$.
6.3. Lemma. If the sequence $\left(\varepsilon_{k}\right)$ defined in the algorithm converges to zero, then the sequence $\left(x_{k}\right)$ converges to \bar{x}, the minimizer of F.

Proof. By Lemma 5.12, Step 7 of the algorithm is executed finitely often per iteration. Hence a subsequence $\left(\varepsilon_{k^{\prime}}\right)$ of $\left(\varepsilon_{k}\right)$ may be chosen such that

$$
\varepsilon_{k \cdot 1}=\varepsilon_{k} / 2 \quad \text { and } \quad \mid y_{c_{k}} \leq \varepsilon_{k} .
$$

where y_{ε} was defined in Step 5 of the algorithm. Since $\varepsilon_{k} \rightarrow 0 . y_{\varepsilon_{k}} \rightarrow 0$. We replace all the occurrences of s_{k} in the proof of the previous lemma by $!_{k}$ and repeat the reasoning therein to see the validity of the present lemma.
6.4. Lemma. The sequence $\left(s_{k}\right)$ is bounded.

Proof. Note that

$$
\nabla f\left(x_{k}\right)+K_{0}\left(x_{k}\right) \subset \nabla f\left(x_{k}\right)+K_{c_{k}}\left(x_{k}\right)+C_{t_{k}}\left(x_{k}\right)
$$

so that

$$
\left|s_{k} \leq \leqslant\left|\nabla f\left(x_{k}\right)\right|+|N| K_{0}\left(x_{k}\right)\right| \text {. }
$$

Since $K_{0}\left(x_{k}\right)=\operatorname{conv}\left\{\nabla v_{j}\left(x_{k}\right) \mid j \in J_{0}\left(x_{k}\right)\right\}$.

$$
\begin{aligned}
\left.|N| K_{0}\left(x_{k}\right) \mid\right\} & \left.\leqslant \max _{\{\mid}\left|\nabla_{v_{j}}\left(x_{k}\right)\right| j \in J_{0}\left(x_{k}\right)\right\} \\
& \leqslant \max _{1 \leqslant j}\left|\nabla_{v_{j}}\left(x_{k}\right)\right| .
\end{aligned}
$$

Hence

$$
\left|s_{k}\right| \leqslant \max _{x \in X}|\nabla f(x)|+\max _{x \in X} \max _{1 \leqslant i<r} \nabla r_{i}(x) \mid .
$$

The right-hand side of the above inequality is finite since the functions f and v_{j} are all of class C^{1} on the compact set X. This proves the lemma.
6.5. Lemma. Let $\varepsilon_{0}>0$ be as in Step 3 of the algorithm and $0 \leqslant \varepsilon \leqslant \varepsilon_{11}$. Let $x \in X$ and $I_{\varepsilon}(x)$ be non-empty. Then there exists $\delta>0$ such that

$$
\begin{equation*}
d(y) \geqslant \frac{1}{2} d(x)>0, \quad \forall y-x<\delta, \quad y \in X . \tag{6.5.1}
\end{equation*}
$$

where

$$
d(y)=\inf \left\{\left.\left|\frac{\backslash}{i} \lambda_{i} e_{i}(y)\right| \right\rvert\, \lambda_{i} \geqslant 0, \frac{\searrow}{i} \lambda_{i}=1, i \in I_{t}(y)\right\} .
$$

and

$$
e_{i}(y)=\nabla g_{i}(y) / / \nabla g_{i}(y) \mid, \quad i \in I_{\varepsilon}(y)
$$

Proof. By Lemma 5.16, $\nabla g_{i}(x) \neq 0, \forall i \in I_{\varepsilon}(x)$ and the cone $C_{\varepsilon}(x)$ is pointed. This ensures that $0 \notin \operatorname{conv}\left\{e_{i}(x) \mid i \in I_{i}(x)\right\}$ and hence $d(x)>0$. Choose $\delta>0$ such that by Lemma 5.1, $I_{\varepsilon}(x) \supset I_{\varepsilon}(y)$ if $|x-y|<\delta, y \in X$. We can also require that $\delta>0$ be such that $\nabla g_{i}(y) \neq 0$ and

$$
\begin{equation*}
\left|e_{i}(y)-e_{i}(x)\right|<\frac{1}{2} d(x) \tag{6.5.2}
\end{equation*}
$$

$\forall i \in I_{\varepsilon}(x), y \in X,|y-x|<\delta$.
Now

$$
\begin{aligned}
d(y) & =\inf \left\{\left|\sum \lambda_{i} e_{i}(y)\right| \mid \lambda_{i} \geqslant 0, \sum \lambda_{i}=1, i \in I_{\varepsilon}(y)\right\} \\
& \left.\geqslant \inf | | \sum \lambda_{i} e_{i}(y)| | \lambda_{i} \geqslant 0, \sum \lambda_{i}=1, i \in I_{E}(x)\right\}
\end{aligned}
$$

Also

$$
\left|\sum_{i \in I_{\varepsilon}(x)} \lambda_{i} e_{i}(y)\right| \geqslant\left|\sum_{i \in I_{\varepsilon^{i}}(x)} \lambda_{i} e_{i}(x)\right|-\left|\sum_{i \in I_{G}(x)} \lambda_{i}\left(e_{i}(y)-e_{i}(x)\right)\right| .
$$

This in conjunction with (6.5.2) yields the inequality

$$
\begin{aligned}
d(y) & \geqslant \inf \left\{\left|\sum \lambda_{i} e_{i}(x)\right| \mid \lambda_{i} \geqslant 0, \sum \lambda_{i}=1, i \in I_{\varepsilon}(x)\right\}-\frac{1}{2} d(x) \\
& =\frac{1}{2} d(x) .
\end{aligned}
$$

We have already verified that if 0 is a cluster point of either the sequence $\left(\left|s_{k}\right|\right)$ or the sequence $\left(\varepsilon_{k}\right)$ then $\left(x_{k}\right)$ converges to the minimizer of problem (P). So let us consider the situation when $\left(\left|s_{k}\right|\right)$ and $\left(\varepsilon_{k}\right)$ are both bounded away from zero. Since $\left(\varepsilon_{k}\right)$ is a nonincreasing positive sequence $\left(\varepsilon_{k}\right)$ is bounded away from zero iff there is $\varepsilon>0$ such that $\varepsilon_{k} \downarrow \varepsilon$. From the steps of the algorithm this can happen iff $\varepsilon_{k}=\varepsilon$, eventually. Hence in the following lemmas we shall assume that the $\left(\varepsilon_{k}\right)$ defined in the algorithm is such that $\varepsilon_{k}=\varepsilon>0$, eventually, and that $\left(s_{k}\right)$ is bounded away from 0 .
6.6. Lemma. Let $\left(s_{k}\right)$ be bounded away from zero. Then the sequences $\left(t_{k}\right)$ and $\left(\alpha_{k}\right)$ are both bounded. Moreover, $\left(t_{k}\right)$ is bounded away from zero.

Proof. Let

$$
\delta=\min _{x \in X}\left\{|\nabla f(x)|+\max _{1 \leqslant j \leqslant r}\left|\nabla v_{j}(x)\right|\right\} .
$$

Since we have got past Step 2 of the algorithm the continuous function in braces $\{\cdots\}$ is positive on compact X and hence $\delta>0$. By Step 8 of the algorithm

$$
\begin{aligned}
M_{k} & =\left\{\left|\nabla f\left(x_{k}\right)\right|+\max _{1 \leqslant j \leqslant r}\left|\nabla v_{j}\left(x_{k}\right)\right|\right\} u_{k} \mid \\
& \geqslant \delta \mid u_{k},
\end{aligned}
$$

and hence

$$
\begin{align*}
\hat{\lambda}_{k}\left|u_{k}\right| & =\left|u_{k}\right|\left|s_{k}\right|^{2} /\left(2 M_{k}+1\right) \\
& \leqslant M_{k}\left|s_{k}\right|^{2} /\left\{\delta\left(2 M_{k}+1\right)\right\}<\left|s_{k}\right|^{2} /(2 \delta) . \tag{6.6.1}
\end{align*}
$$

Since $t_{k}=s_{k}+\lambda_{k} u_{k}$ with $\left(s_{k}\right)$ bounded, by (6.6.1) we find that $\left(t_{k}\right)$ is bounded.

We now show that $\left(t_{k}\right)$ is bounded away from zero. If not, since $\left(t_{k}\right)$ is a bounded sequence, there exists a subsequence $\left(t_{k}\right)$ such that $t_{k} \rightarrow 0$. Since the sequence ($s_{k^{\prime}}$) is also bounded, by passing to another subsequence again denoted by $\left(k^{\prime}\right)$, we can require that $s_{k^{\prime}} \rightarrow s \neq 0$. This implies that $s_{k}+$ $\lambda_{k^{\prime}}, u_{k^{\prime}} \rightarrow 0$. Hence, $\lambda_{k} \cdot u_{k^{\prime}} \rightarrow-s$ and

$$
\begin{equation*}
\left(\hat{\lambda}_{k}, u_{k^{\prime}}\right) s_{k^{\prime}} \rightarrow-s_{1}^{2} \tag{6.6.2}
\end{equation*}
$$

By (5.17.1), $u_{k^{\prime}} s_{k^{\prime}} \geqslant 0$ for every k^{\prime} which shows that $\left(\lambda_{k}, u_{k}\right) s_{k}=$ $\hat{\lambda}_{k^{\prime}}\left(u_{k} \cdot s_{k^{\prime}}\right) \geqslant 0$. By (6.6.2) $s=0$. a contradiction. Hence $\left(t_{k}\right)$ is bounded away from zero.

Now $\alpha_{k}\left|t_{k}\right|$ is bounded above by the diameter of X. Since we just showed that $\left|t_{k}\right|$ is bounded away from zero, we conclude that $\left(\alpha_{k}\right)$ is a bounded sequence.
6.7. Lemma. Let $\left(\varepsilon_{k}\right)$ be as defined in the algorithm. Suppose that $\varepsilon_{k}=$ $\varepsilon>0$, eventually. Let $\left(k^{\prime}\right)$ be a subsequence such that $I_{t}\left(x_{k}\right)$ is nonempty for every k^{\prime} with $x_{k^{\prime}} \rightarrow x \in X$. Then there exists $M>0$ and $\theta \geqslant 1$ such that the following hold:

$$
\begin{gather*}
1 \leqslant\left|u_{k^{\prime}}\right| \leqslant \theta, \quad \forall k^{\prime}, \tag{6.7.1}\\
\left|s_{k^{\prime}}\right|^{2} /(2 M+1) \leqslant i_{k} \leqslant\left|s_{k^{\prime}}\right|^{2}, \quad \forall k^{\prime} . \tag{6.7.2}
\end{gather*}
$$

Proof. By Lemmas 5.1 and 6.5 there exists $\delta>0$ such that

$$
\begin{gather*}
I_{\varepsilon}(x) \supset I_{\varepsilon}(y) \tag{6.7.3}\\
d(y) \geqslant d(x) / 2, \quad \forall y \in X, \quad y-x<\delta, \tag{6.7.4}
\end{gather*}
$$

where d was defined in Lemma 6.5. There exists p such that $\left|x_{k}-x\right|<\delta$ if $k^{\prime} \geqslant p$. Hence, $I_{\varepsilon}\left(x_{k^{\prime}}\right) \subset I_{\varepsilon}(x), \forall k^{\prime} \geqslant p$. This shows that $I_{\varepsilon}(x)$ is non-empty
and hence by Lemma 5.16, $\nabla g_{i}(x) \neq 0$ for every $i \in I_{t}(x)$. By reducing $\delta>0$, if necessary, we may assume that

$$
\begin{equation*}
\frac{1}{2}\left|\nabla g_{i}(x)\right| \leqslant\left|\nabla g_{i}(y)\right| \leqslant \frac{3}{2}\left|\nabla g_{i}(x)\right|, \tag{6.7.5}
\end{equation*}
$$

$\forall i \in I_{e}(x), y \in X,|y-x|<\delta$. By Lemma 6.5, $d(x)>0$. Using Lemma 5.15, (6.7.3), (6.7.4), and (6.7.5) we get

$$
\begin{align*}
\left|u_{k^{\prime}}\right| & \leqslant\left(\max _{i \in I_{\epsilon}\left(x_{k^{\prime}}\right)}\left|\nabla g_{i}\left(x_{k^{\prime}}\right)\right|\right) /\left(d^{2}\left(x_{k^{\prime}}\right) \min _{i \in I_{\epsilon^{\prime}}\left(x_{k^{\prime}}\right)}\left|\nabla g_{i}\left(x_{k^{\prime}}\right)\right|\right) \\
& \leqslant 4\left(\max _{i \in I_{\varepsilon^{\prime}(x)}}\left|\nabla g_{i}\left(x_{k^{\prime}}\right)\right|\right) /\left(d^{2}(x) \min _{i \in I_{\varepsilon^{\prime}(x)}}\left|\nabla g_{i}\left(x_{k^{\prime}}\right)\right|\right) \\
& \leqslant 12\left(\max _{i \in I_{\varepsilon^{\prime}(x)}}\left|\nabla g_{i}(x)\right|\right) /\left(d^{2}(x) \min _{i \in I_{e^{\prime}(x)}}\left|\nabla g_{i}(x)\right|\right) \\
& =\beta_{x}, \quad \forall k^{\prime} \geqslant p . \tag{6.7.6}
\end{align*}
$$

Since β_{x} is a positive real number, there exists $\theta>0$ such that $\left|u_{k^{\prime}}\right| \leqslant \theta$, for every k^{\prime}. By (5.15.2), $\left|u_{k^{\prime}}\right| \geqslant 1$ as well, so that (6.7.1) is verified.

By Step 8 of the algorithm,

$$
\begin{align*}
M_{k^{\prime}} & =\left(\left|\nabla f\left(x_{k^{\prime}}\right)\right|+\max _{1 \leqslant i \leqslant r}\left|\nabla v_{j}\left(x_{k^{\prime}}\right)\right|\right)\left|u_{k^{\prime}}\right| \\
& \leqslant \max _{z \in X}\left(|\nabla f(z)|+\max _{1 \leqslant j \leqslant r}\left|\nabla v_{j}(z)\right|\right) \theta \\
& =M \quad \text { (say }) . \tag{6.7.7}
\end{align*}
$$

By Step 9 of the algorithm,

$$
\lambda_{k^{\prime}}=\left|s_{k^{\prime}}\right|^{2} /\left(2 M_{k^{\prime}}+1\right) \geqslant\left|s_{k^{\prime}}\right|^{2} /(2 M+1) .
$$

The inequality (6.7.2) is now evident, completing the proof of the lemma.
6.8. Lemma. Let $\left(\varepsilon_{k}\right)$ be as defined in the algorithm. Suppose $\varepsilon_{k}=\varepsilon>0$ eventually and $\left(s_{k}\right)$ is bounded away from zero. Then the sequence $\left(\alpha_{k}\right)$ converges to zero.

Proof. If $\left(\alpha_{k}\right)$ does not converge to zero by Lemma 6.6 there is a subsequence ($\alpha_{k^{\prime}}$) such that $\alpha_{k^{\prime}} \rightarrow \alpha>0$. We distinguish two cases.

Case 1. We assume that $I_{\varepsilon_{k}}\left(x_{k^{\prime}}\right)$ is empty for an infinity of indices k^{\prime}. Passing to a subsequence, again denoted by k^{\prime}, we can require that $I_{\kappa_{k}}\left(x_{k^{\prime}}\right)$ is empty for every k^{\prime}. Due to the boundedness of $\left(s_{k}\right)$ and compactness of X we can require $s_{k^{\prime}} \rightarrow s \neq 0, x_{k^{\prime}} \rightarrow x \in X$. In the present case, $u_{k^{\prime}}$ defined in Step 8 of the algorithm is zero and hence $t_{k^{\prime}}=s_{k^{\prime}}$ for all k^{\prime}. Since ($F\left(x_{k}\right)$) is a decreasing sequence all its subsequences converge to $F(x)$. Hence $F\left(x_{k^{\prime}+1}\right) \rightarrow$
$F(x)$ also. Since $x_{k^{\prime}+1}=x_{k^{\prime}}-\alpha_{k^{\prime}} s_{k^{\prime}}$, in the present case, $x_{k^{\prime}+1} \rightarrow x-\alpha s$. We therefore find that

$$
\begin{equation*}
F(x-\alpha S)=F(x) . \tag{6.8.1}
\end{equation*}
$$

Since

$$
F\left(x_{k}-\alpha_{k} \cdot s_{k}\right) \leqslant F\left(x_{k}-\lambda s_{k}\right), \quad \forall \in\left|0 . \bar{a}_{h}\right|
$$

and F is convex we find that

$$
\begin{align*}
F\left(x_{k}, u_{k} \cdot s_{k}\right) & \leqslant F\left(x_{k}-u_{k} s_{k} \cdot 2\right) \\
& \leqslant\left\{F\left(x_{k}-u_{k} \cdot s_{k}\right)+F\left(x_{k}\right) / 1 / 2\right. \\
& \leqslant F\left(x_{k}\right) \tag{6.8.2}
\end{align*}
$$

In the limit we get

$$
\begin{equation*}
F(x-a S) \leqslant F(x-a S / 2) \leqslant F(x) \tag{6.8.3}
\end{equation*}
$$

In view of (6.8.1), (6.8.3), and the strict convexity of F we find $a=0$, a con tradiction.

Case 2. We now consider the case when $\alpha_{k} \rightarrow a>0$ and $I_{k_{k}}\left(x_{k}\right)=$ $I_{k}\left(x_{k}\right)$ are non-empty for all sufficiently large k^{\prime}. Once more. we may assume that $s_{k^{\prime}} \rightarrow s \neq 0$ and $x_{k^{\prime}} \rightarrow x \in X$. The hypotheses of Lemma 6.7 are now applicable, so that (6.7.1) and (6.7.2) hold. We may therefore pass 10 another subsequence, again denoted by k^{\prime}. such that $u_{k} \rightarrow i_{k} i_{k} \rightarrow i_{\text {. }}$ By (6.7.1) and (6.7.2) we also see that

$$
\begin{equation*}
u \mid \geqslant 1 \quad \text { and } \quad \lambda \geqslant \mid s_{i}^{2} /(2 M+1) \tag{6.8.4}
\end{equation*}
$$

By Step 9 of the algorithm $t_{k}=s_{k^{\prime}}+\lambda_{k^{\prime}} u_{k^{\prime}}$ and hence

$$
\begin{equation*}
\left.t_{k} \rightarrow s+\lambda u=t \quad \text { (say }\right) \tag{6.8.5}
\end{equation*}
$$

Now $t \neq 0$, by Lemma 6.6. Since $x_{k}{ }_{i}=x_{k}-u_{k} t_{k} \rightarrow x-a t$. and since $\left(F\left(x_{k}\right)\right)$ is decreasing to $F(x)$, we see that

$$
\begin{equation*}
F(x-\alpha t)=F(t) \tag{6.8.6}
\end{equation*}
$$

Also as in Case 1 above,

$$
\begin{equation*}
F(x-a t) \leqslant F(x-a t / 2) \leqslant F(x) \tag{6.8.7}
\end{equation*}
$$

which contradicts the strict convexity of F, since $\alpha>0$. The proof of the lemma is now complete.
6.9. Lemma. Let $\left(\varepsilon_{k}\right)$ be as defined in the algorithm with $\varepsilon_{k}=\varepsilon>0$ eventually and $\left(s_{k}\right)$ bounded away from zero. Let the subsequence $x_{k^{\prime}} \rightarrow x \in X$. Then there is a subsequence of $\left(k^{\prime}\right)$, again denoted by $\left(k^{\prime}\right)$, such that $I_{0}\left(x_{k^{\prime}}\right)=I_{0}(x)$ for all k^{\prime}.

Proof. Since the index sets $I_{0}\left(x_{k^{\prime}}\right)$ are subsets of $\{1, \ldots, m\}$, we can pass to yet another subsequence, again denoted by k^{\prime}, such that $I_{0}\left(x_{k^{\prime}}\right)=I$, for every k^{\prime}. We will show that $I=I_{0}(x)$. If $i \in I$, then $g_{i}\left(x_{k^{\prime}}\right)=0$, so that in the limit $g_{i}(x)=0$. This shows that $I \subset I_{0}(x)$. There is nothing to prove if $I_{0}(x)$ is empty. To prove the reverse inclusion, let $i \in I_{0}(x) \backslash I$. We shall derive a contradiction. Since $x_{k+1}=x_{k}-\alpha_{k} t_{k}$, with $\left(t_{k}\right)$ shown bounded by Lemma 6.6, and $\alpha_{k} \rightarrow 0$ by Lemma 6.8 we see that $\left|x_{k+1}-x_{k}\right| \rightarrow 0$ as $k \rightarrow \infty$. Let $M=\max _{z \in X}\left|\nabla g_{i}(z)\right|$. Then there exists k_{0} such that

$$
\begin{equation*}
\left|x_{k+1}-x_{k}\right|<\varepsilon /(2 M), \quad \forall k \geqslant k_{0} \tag{6.9.1}
\end{equation*}
$$

Since $i \notin I, g_{i}\left(x_{k^{\prime}}\right)<0$. Also since $g_{i}\left(x_{k^{\prime}}\right) \rightarrow 0$, in the sequence of integers (k^{\prime}), we can find $p \geqslant k_{0}$ such that

$$
\begin{equation*}
0>-\delta=g_{i}\left(x_{p}\right)>-\varepsilon / 2 \tag{6.9.2}
\end{equation*}
$$

Let q be the first index such that $q>p$ and

$$
\begin{equation*}
g_{i}\left(x_{q}\right) \geqslant-\delta / 2 \tag{6.9.3}
\end{equation*}
$$

Now

$$
\begin{aligned}
g_{i}\left(x_{q-1}\right) & \geqslant g_{i}\left(x_{q}\right)+\nabla g_{i}\left(x_{q}\right)\left(x_{q-1}-x_{q}\right) \\
& >-(\delta / 2)-M \varepsilon /(2 M)>-\varepsilon .
\end{aligned}
$$

This shows that $i \in I_{\varepsilon}\left(x_{q-1}\right)$. By Step 10 of the algorithm

$$
\begin{equation*}
g_{i}\left(x_{q}\right) \leqslant g_{i}\left(x_{q-1}\right) \tag{6.9.4}
\end{equation*}
$$

By (6.9.3) and (6.9.4),

$$
\begin{equation*}
g_{i}\left(x_{q-1}\right) \geqslant-\delta / 2 \tag{6.9.5}
\end{equation*}
$$

Note that $q-1 \geqslant p$. If $q-1=p$, then (6.9.5) contradicts (6.9.2). If $q-1>p$, then (6.9.5) contradicts the choice of q as the smallest index greater than p for which (6.9.3) holds. Hence $I_{0}(x)=I$, and the proof of the lemma is now complete.

We are finally in a position to prove the convergence of the algorithm.
6.10. Theorem. Algorithm 4.1 generates either a terminating sequence whose last term is the minimizer of problem (P) or an infinite sequence converging to the minimizer of problem (P).

Proof. In view of Lemmas 5.10 and 5.11, we need only consider the case in which Algorithm 4.1 generates an infinite sequence $\left(x_{k}\right)$. In this case, $s_{k} \neq 0$ for every k. We assume that $\left(x_{k}\right)$ fails to converge to the solution of (P) and derive a contradiction.

Due to the remarks after Lemma 6.5 we may assume that $\left(s_{k}\right)$ is bounded away from zero and that the non-increasing positive sequence $\left(\varepsilon_{k}\right)$ is such that $\varepsilon_{k}=\varepsilon>0$, eventually for all k. We distinguish two cases.

Case 1. We assume that there are an infinity of indices k for which z_{k} in Step 11 of the algorithm are defined and arrive at a contradiction. Denote this subsequence of indices by $\left(k^{\prime}\right)$. Let us consider the situation when $I_{\epsilon}\left(x_{k}\right)$ are nonempty for all k^{\prime}. eventually. Passing to a further subsequence, if necessary, but denoting the new subsequence again by (k^{\prime}). because X is compact, $\left(s_{k^{\prime}}\right),\left(u_{k^{\prime}}\right),\left(M_{k^{\prime}}\right),\left(\lambda_{k^{\prime}}\right)$ all bounded (Lemmas 6.4. 6.6, and 6.7) we may assume that

$$
x_{k^{\prime}} \rightarrow x \in X, \quad s_{k^{\prime}} \rightarrow s \neq 0, \quad M_{k} \rightarrow M \geqslant 0 . \quad u_{k} \rightarrow u \neq 0 .
$$

$$
\begin{equation*}
\lambda_{k^{\prime}} \rightarrow \lambda>0, \quad t_{k}=s_{k^{\prime}}+\lambda_{k^{\prime}} u_{k^{\prime}} \rightarrow s+i u=t \neq 0 \tag{6.10.1}
\end{equation*}
$$

By Lemma 6.8, $\alpha_{k} \rightarrow 0$ and hence $x_{k^{\prime}+1}=x_{k} \cdots \alpha_{k} t_{k} \rightarrow x$. Passing to a still further subsequence, again denoted (k^{\prime}), we may assume that there exists sets I, J, and J^{\prime} such that

$$
\begin{equation*}
I_{\varepsilon}\left(x_{k^{\prime}}\right)=I . \quad J_{\varepsilon}\left(x_{k^{\prime}}\right)=J, \quad J_{0}\left(x_{k^{\prime}, 1}\right)=J^{\prime} . \tag{6.10.2}
\end{equation*}
$$

for all k^{\prime}. Since $\left(x_{k}\right)$ and $\left(x_{k^{\prime}+1}\right)$ both converge to x, by Lemmas 5.5 and 5.1 we find that $J_{0}(x) \subset J_{\varepsilon}\left(x_{k}\right)$ and $J_{0}\left(x_{k}, 1\right) \subset J_{0}(x)$. respectively, for large enough k^{\prime}. Hence by (6.10 .2) we find that $J^{\prime} \subset J$. Let us set

$$
\begin{equation*}
K\left(x_{k^{\prime}}\right)=\operatorname{conv}\left\{\nabla v_{j}\left(x_{k}\right) \mid j \in J ;\right. \tag{6.10.3}
\end{equation*}
$$

and

$$
\begin{equation*}
C\left(x_{k}\right)=\text { cone }\left\{\nabla g_{i}\left(x_{k^{\prime}}\right) \mid i \in I\right. \tag{6.10.4}
\end{equation*}
$$

For each k^{\prime} we have

$$
\begin{equation*}
z_{k^{\prime}} \in \nabla f\left(x_{k^{\prime}+1}\right)+K_{0}\left(x_{k^{\prime}+1}\right) \tag{6.10.5}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{k^{\prime}} t_{k^{\prime}}=0 \tag{6.10.6}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{0}\left(x_{k^{\prime}+1}\right)=\operatorname{conv}\left\{\nabla v_{j}\left(x_{k^{\prime}+1}\right) \mid j \in J^{\prime}\right\} \tag{6.10.7}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{k^{\prime}}=N\left[\nabla f\left(x_{k^{\prime}}\right)+K\left(x_{k^{\prime}}\right)+C\left(x_{k^{\prime}}\right)\right] . \tag{6.10.8}
\end{equation*}
$$

Now the carrier (i.e., point-to-set map) $y \mapsto \partial v(y)=K_{0}(y)$ is upper semicontinuous. (See Rockafellar [6].) Clearly, for each $y \in X$, $\nabla f(y)+K_{0}(y)$ is a closed set. Hence $y \mapsto \nabla f(y)+K_{0}(y)$ is a closed carrier. From (6.10.5) we see that $\left(z_{k}\right)$ is a bounded sequence, and hence passing to a further subsequence assume that $z_{k^{\prime}} \rightarrow z$. Since $x_{k^{\prime}+1} \rightarrow x$ due to (6.10.5) and the closedness of the carrier $y \mapsto \nabla f(y)+K_{0}(y)$ we conclude that

$$
\begin{equation*}
z \in \nabla f(x)+K_{0}(x) \tag{6.10.9}
\end{equation*}
$$

Due to (6.10.8)

$$
\begin{equation*}
s_{k^{\prime}}\left(\nabla f\left(x_{k^{\prime}}\right)+\sum_{j \in J} \lambda_{j} \nabla v_{j}\left(x_{k^{\prime}}\right)+\sum_{i \in I} \mu_{i} \nabla g_{i}\left(x_{k^{\prime}}\right)\right) \geqslant\left|s_{k^{\prime}}\right|^{2}, \tag{6.10.10}
\end{equation*}
$$

where λ_{j}, μ_{i} are all $\geqslant 0$, with $\sum_{j \in J} \lambda_{j}=1$. For fixed $\left(\lambda_{j}\right)$ and $\left(\mu_{i}\right)$, we allow $k^{\prime} \rightarrow \infty$ in (6.10.10) to get

$$
s\left(\nabla f(x)+\sum_{j \in J} \lambda_{j} \nabla v_{j}(x)+\sum_{i \in I} \mu_{i} \nabla g_{i}(x)\right) \geqslant|s|^{2}
$$

This shows that

$$
\begin{equation*}
s=N\left|\nabla f(x)+K^{*}+C^{*}\right|, \tag{6.10.11}
\end{equation*}
$$

where

$$
K^{*}=\operatorname{conv}\left\{\nabla v_{j}(x) \mid j \in J\right\} \quad \text { and } \quad C^{*}=\operatorname{cone}\left\{\nabla g_{i}(x) \mid i \in I\right\}
$$

This with (3.7) gives us the inequality

$$
(\nabla f(x)+y) s \geqslant|s|^{2}, \quad \forall y \in K^{*}
$$

By Lemma 5.4, $J_{0}(x) \subset J$ and hence $K_{0}(x) \subset K^{*}$. Moreover, by (5.19.3)

$$
\begin{align*}
F^{\prime}(x ;-s) & =-\min \left\{(\nabla f(x)+y) s \mid y \in K_{0}(x)\right\} \\
& \leqslant-|s|^{2} \quad \text { by above. } \tag{6.10.12}
\end{align*}
$$

As in (5.19.7) from (6.10.12) we now get

$$
\begin{equation*}
F^{\prime}(x ;-t) \leqslant-|s|^{2}+\lambda\left\{-\nabla f(x) u+\max _{j \in J_{0}(x)}\left(-\nabla v_{j}(x) u\right)\right\} \tag{6.10.13}
\end{equation*}
$$

Note that (6.10 .1) with $(5.19 .8)$ shows that

$$
\left(|\nabla f(x)|+\max _{1 \leqslant j \leqslant r}\left|v_{j}(x)\right|\right)|u| \leqslant M .
$$

Since $\lambda=|s|^{2} /(2 M+1)$, by $(6,10.13)$

$$
\begin{equation*}
F^{\prime}(x ;-t) \leqslant-|s|^{2}+|s|^{2} M /(2 M+1) \leqslant-\mid s^{2} / 2<0 . \tag{6.10.14}
\end{equation*}
$$

We now show that $-t$ is a feasible direction at x. The proof of Lemma 5.18 shows that to show $-t$ is feasible. it is sufficient to show that

$$
\begin{equation*}
\nabla g_{i}(x) s \geqslant 0 \quad \text { and } \quad \nabla g_{i}(x) u>0 . \quad \forall i \in I_{0}(x) \tag{6.10.15}
\end{equation*}
$$

Since $C_{0}(x) \subset C^{*}$, the argument used in deriving (5.17.3) applied now with (6.10.11) yields $\nabla g_{i}(x) s \geqslant 0, \forall i \in I_{0}(x)$. By (5.17.2) we have

$$
\nabla g_{i}\left(x_{k}\right) u_{k} \geqslant \mid \nabla g_{i}\left(x_{k}\right), \quad \forall i \in I_{x_{k}}\left(x_{k}\right)
$$

Allowing $k^{\prime} \rightarrow \infty$ and using Lemma 5.4. we get

$$
\begin{aligned}
\nabla g_{i}(x) u & \geqslant \nabla g_{i}(x) \mid, & & \forall i \in I_{11}(x) \\
& >0 & & \text { by Lemma } 5.16 .
\end{aligned}
$$

Thus (6.10 .15) has been verified. This in view of $(6.10 .14)$ shows that $-t$ is a feasible direction of strict descent at x.

At this stage let us consider the situation when $I_{t}\left(x_{k}\right)$ are empty for an infinity of k^{\prime}. Renaming this subsequence again as $\left(k^{\prime}\right)$. by Step 8 of the algorithm we see that $u_{k^{\prime}}=0, \lambda_{k}=\left|s_{k}\right|^{2}$, and $s_{k}=t_{k}, \forall k^{\prime}$. By Lemma 5.4 $I_{0}(x)$ is empty, so $-s$ is a feasible direction of strict descent at x in this case.

As in Lemma 5.19 we form the function φ, where $\varphi(\alpha)=f(x-u t)+$ $v(x-\alpha t)$. Passing to the limit in (6.10.6) we get $z t=0$. In view of (6.10.9) and Lemma 5.22 we will have to conclude that 0 is a minimizer of 0 , contradicting our observation that $-t$ is a feasible direction of strict descent at x.

Case 2. We now take up the case when z_{k} is undefined for all but a finite number of indices k. This being the case, we might as well assume that z_{k} is undefined for every k. Then by Step 11, $\alpha_{k}=\bar{\alpha}_{k}$ for all k.

We observe that this entails that $I_{\varepsilon}\left(x_{k}\right)$ are non-empty for all $k \geqslant 1$, If $I_{\varepsilon}\left(x_{0}\right)=\varnothing$, then since $\alpha_{0}=\bar{\alpha}_{0}, x_{1}$ belongs to the boundary of X, so that $I_{0}\left(x_{1}\right) \neq \varnothing$, a fortiori, $I_{\varepsilon}\left(x_{1}\right) \neq \varnothing$. If $I_{\varepsilon}\left(x_{k}\right) \neq \varnothing$. then since $\alpha_{k}=\bar{a}_{k}$. either $I_{\varepsilon}\left(x_{k}\right) \cap I_{\varepsilon}\left(x_{k+1}\right) \neq \varnothing$ or $I_{\varepsilon}\left(x_{k+1}\right) \backslash I_{\varepsilon}\left(x_{k}\right) \neq \varnothing$. i.e., some constraint which is ε binding at the k th iteration remains ε-binding for $(k+1)$ or else a new constraint has become binding and hence ε-binding also at the $(k+1)$ iteration. So inductively $I_{\varepsilon}\left(x_{k}\right) \neq \varnothing, \forall k \geqslant 1$.

We just verified that if z_{k} are undefined for all k, then $I_{\varepsilon}\left(x_{k}\right)$ are non-empty for all $k \geqslant 1$. Once more, we can pass to a subsequence (k^{\prime}) such that $x_{k^{\prime}} \rightarrow$ $x \in X, s_{k^{\prime}} \rightarrow 0$. By Lemma 6.7, we pass to yet another subsequence, again denoted by (k^{\prime}), such that $\lambda_{k^{\prime}} \rightarrow \lambda>0, u_{k^{\prime}} \rightarrow u,|u| \geqslant 1$. Then

$$
\begin{equation*}
t_{k^{\prime}}=s_{k^{\prime}}+\lambda_{k^{\prime}} u_{k^{\prime}} \rightarrow s+\lambda u=t \tag{6.10.16}
\end{equation*}
$$

By Lemma $6.6 t \neq 0$ and by Lemma $6.8 \alpha_{k} \rightarrow 0$, so that by the above $x_{k^{\prime}+1} \rightarrow x$ also. Using Lemma 6.9 we can also require the subsequence (k^{\prime}) to satisfy

$$
I_{0}\left(x_{k^{\prime}}\right)=I_{0}(x)=I_{0}\left(x_{k^{\prime}+1}\right), \quad \forall k^{\prime}
$$

By passing to a further subsequence, as usual denoted by (k^{\prime}), we may assume that $I_{\varepsilon}\left(x_{k^{\prime}}\right)=I$, for all k^{\prime}. Note that I is non-empty. In this case, since $\alpha_{k^{\prime}}=\bar{\alpha}_{k^{\prime}}$ and $I_{0}\left(x_{k^{\prime}}\right)=I_{0}\left(x_{k^{\prime}+1}\right)$ for every k^{\prime} by Step 10 of the algorithm, we find that for each k^{\prime} there exists $i \in I$ such that

$$
\begin{equation*}
g_{i}\left(x_{k^{\prime}}-\alpha_{k^{\prime}} t_{k^{\prime}}\right)=g_{i}\left(x_{k^{\prime}}\right) . \tag{6.10.17}
\end{equation*}
$$

Since i must be one of the indices 1 through m, by passing to yet another subsequence, again denoted (k^{\prime}), we can find a fixed i such that (6.10.17) holds for every k^{\prime}. Now by Lemma 5.17 and (5.17.3)

$$
\begin{align*}
\nabla g_{i}\left(x_{k^{\prime}}\right) t_{k^{\prime}} & =\nabla g_{i}\left(x_{k^{\prime}}\right)\left(s_{k^{\prime}}+\lambda_{k^{\prime}} u_{k^{\prime}}\right) \\
& =\nabla g_{i}\left(x_{k^{\prime}}\right) s_{k^{\prime}}+\lambda_{k^{\prime}} \nabla g_{i}\left(x_{k^{\prime}}\right) u_{k^{\prime}} \\
& \geqslant \lambda_{k^{\prime}}\left|\nabla g_{i}\left(x_{k^{\prime}}\right)\right|>0, \tag{6.10.18}
\end{align*}
$$

since $\lambda_{k^{\prime}}>0$ and $\nabla g_{i}\left(x_{k^{\prime}}\right) \neq 0$, because $i \in I_{\varepsilon^{\prime}}\left(x_{k^{\prime}}\right)$.
We let $\varphi(\alpha)=g_{i}\left(x_{k^{\prime}}-\alpha t_{k^{\prime}}\right), 0 \leqslant \alpha \leqslant \alpha_{k^{\prime}}$ and observe that $\varphi^{\prime}(\alpha)$ is a continuous non-decreasing function of α in the interval $\left[0, \alpha_{k^{\prime}}\right]$. Also by (6.10.18), $\quad \varphi^{\prime}(0+)=-\nabla g_{i}\left(x_{k^{\prime}}\right) t_{k^{\prime}}<0$. By (6.10.17), $\varphi\left(\alpha_{k^{\prime}}\right)=\varphi(0) \quad$ and $\alpha_{k}>0$. We therefore conclude that $\varphi^{\prime}\left(\alpha_{k},-\right) \geqslant 0$. This means that

$$
-t_{k^{\prime}} \nabla g_{i}\left(x_{k^{\prime}}-\alpha_{k^{\prime}} t_{k^{\prime}}\right) \geqslant 0
$$

i.e.,

$$
\begin{equation*}
\nabla g_{i}\left(x_{k^{\prime}+1}\right) t_{k^{\prime}} \leqslant 0 \tag{6.10.19}
\end{equation*}
$$

Allowing $k^{\prime} \rightarrow \infty$ in (6.10.18) and (6.10.19) we get

$$
0 \geqslant \nabla g_{i}(x) t \geqslant \lambda\left|\nabla g_{i}(x)\right| .
$$

Since $\lambda>0$, we see that $\nabla g_{i}(x)=0$. But since $i \in I_{\varepsilon}\left(x_{k^{\prime}}\right), g_{i}\left(x_{k^{\prime}}\right) \geqslant-\varepsilon$ and hence $g_{i}(x) \geqslant-\varepsilon$. We therefore get

$$
g_{i}(a)<-\varepsilon_{0} \leqslant-\varepsilon \leqslant g_{i}(x) .
$$

This shows that x is not a minimizer of g_{i} and since g_{i} is convex, we are contradicting the fact that $\nabla g_{i}(x)=0$. The proof that the algorithm generates a sequence converging to the optimal solution is now complete.

7. Mixed Constraints

The algorithm in Section 4 can be combined with that in $|11|$ to handle the presence of affine and non-affine convex constraints. In problem (P) of Section 2, let g_{1}, \ldots, g_{p} all be non-affine, convex, and differentiable on Ω and g_{p+1}, \ldots, g_{m} all affine. We now replace condition (SQ) of Section 2 by the generalized Slater's constraint qualification (GSQ). i.e.,

$$
\begin{aligned}
& \text { There exists } a \in X \text { such that } \\
& g_{i}(a)<0, i=1 \ldots . . p \quad \text { and } \quad g_{i}(a) \leqslant 0 . i=p+1 \ldots . . m . \quad(\mathrm{GSQ})
\end{aligned}
$$

This affects only the choices of feasible direction and maximum feasible step. The algorithm becomes:
7.1. Algorithm. All steps are the same as in Algorithm 4.1 except that in Steps 8 and 10 define I by

$$
I=I_{\varepsilon_{k}}\left(x_{k}\right) \cap|1, p| .
$$

Also the proof of convergence in the previous section carries over to this more general case with minor changes.

Acknowledgments

Thanks are due to Professor Robert W. Owens for many valuable discussions and for his preprint $|3|$. Thanks are also due to the referee for his helpful remarks.

References

1. V. F. Dem'yanov and V. N. Malozemot, "Introduction to Minimax." Wiley. New York, 1974.
2. C. Lemarechal, An extension of Davidon methods to nondifferentiable problems. Math. Programming Stud. 3 (1975). 95-109.
3. R. W. Owens, Implementation of subgradient projection algorithm li. Internaf. J. Comput. Math. 16 (1984).
4. E. Polak, "Computational Methods in Optimization," Academic Press. New York, 1971.
5. B. N. Pshenichnyi, "Necessary Conditions for an Extremum," Dekker. New York. 1971
6. R. T. Rockafellar, "Convex Analysis," Princeton Univ. Press. Princeton. N.J., 1970.
7. R. T. Rockafellar, "The Theory of Subgradients and its Applications to Problems of Optimization," Hedermann. Berlin. 1981.
8. J. B. Rosen, The gradient projection method for nonlinear programming. Part I. Linear constraints, J. SIAM 8 (1960), 181-217.
9. J. B. Rosen, The gradient projection method for nonlinear programming. Part II. Nonlinear constraints, J. SIAM 9 (1961), 514-532.
10. P. Rubin, Implementation of a subgradient projection algorithm, Internat. J. Comput. Math. 12 (1983), 321-328.
11. V. P. Sreedharan, A subgradient projection algorithm, J. Approx. Theory 35 (2) (1982). 111-126.
12. P. Wolfe, A method of conjugate subgradients for minimizing nondifferentiable functions, Math. Programming Stud. 3 (1975), 145-173.
13. P. Wolfe, On the convergence of gradient methods under constraints, IBM J. Res. Develop. 16 (1972), 407-411.
